scholarly journals Extension of the Optimised Virtual Fields Method to Estimate Viscoelastic Material Parameters from 3D Dynamic Displacement Fields

Strain ◽  
2015 ◽  
Vol 51 (2) ◽  
pp. 110-134 ◽  
Author(s):  
N. Connesson ◽  
E. H. Clayton ◽  
P. V. Bayly ◽  
F. Pierron
2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Yi Liu ◽  
Ge Wang ◽  
L. Z. Sun

Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters.


2010 ◽  
Vol 24-25 ◽  
pp. 379-384
Author(s):  
J.H. Kim ◽  
F. Nunio ◽  
Fabrice Pierron ◽  
P. Vedrine

Tensile tests were performed in order to identify the stiffness components of superconducting windings in the shape of rings (also called ‘double pancakes’). The stereo image correlation technique was used for full-field displacement measurements. The strain components were then obtained from the measured displacement fields by numerical differentiation. Because differentiation is very sensitive to spatial noise, the displacement maps were fitted by polynomials before differentiation using a linear least-square method. Then, in the orthotropy basis, the four in-plane stiffnesses of the double pancake were determined using the Virtual Fields Method.


Author(s):  
Felipe Pires ◽  
Stephane Avril ◽  
Pieter Livens ◽  
Julio A. Cordioli ◽  
Joris Dirckx

Abstract Characterization of material parameters from experimental data remains challenging, especially on biological structures. One of such techniques allowing for the inverse determination of material parameters from measurement data is the Virtual Fields Method (VFM). However, application of the VFM on general structures of complicated shape has not yet been extensively investigated. In this paper, we extend the framework of the VFM method to thin curved solids in 3D, commonly denoted shells. Our method is then used to estimate theYoung's modulus and hysteretic damping of the human eardrum. By utilizing Kirchhoff plate theory, we assume that the behavior of the shell varies linearly through the thickness. The total strain of the shell can then be separated in a bending and membrane strain. This in turn allowed for an application of the VFM based only on data of the outer surface of the shell. We validated our method on simulated and experimental data of a human eardrum made to vibrate at certain frequencies. It was shown that the identified material properties were accurately determined based only on data from the outer surface and are in agreement with literature. Additionally, we observed that neither the bending nor the membrane strain in an human eardrum can be neglected and both contribute significantly to the total strain found experimentally.


2010 ◽  
Vol 83 (1) ◽  
pp. 1-15 ◽  
Author(s):  
M. Kaliske ◽  
C. Zopf ◽  
C. Brüggemann

Abstract The properties of uncured rubber are characterized by a viscoelastic material formulation in order to develop a finite element method (FEM) to predict the deformation behavior of this material during processing. As material formulation, a viscoelastic material model is considered, which consists of a nonlinear Hooke spring connected in parallel to a finite number of Maxwell elements. To identify the material parameters, various tests have to be conducted. The chosen test procedure and data analysis strategy are presented. An evolutionary optimization procedure is used to fit the material parameters to the measurements by minimizing the mean square error of the approximation. At the end, the suitability of the chosen material model and the identified material parameters is shown. Finally, the result of a molding test is compared to the corresponding FEM simulation.


Sign in / Sign up

Export Citation Format

Share Document