scholarly journals A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance

2018 ◽  
Vol 94 (6) ◽  
pp. 1064-1082 ◽  
Author(s):  
Katrin Gruner ◽  
Tatyana Zeier ◽  
Christina Aretz ◽  
Jürgen Zeier
1999 ◽  
Vol 89 (9) ◽  
pp. 722-727 ◽  
Author(s):  
Matthew E. Spletzer ◽  
Alexander J. Enyedi

Alternaria solani is the causal agent of early blight disease in tomato and is responsible for significant economic losses sustained by tomato producers each year. Because salicylic acid (SA) is an important signal molecule that plays a critical role in plant defense against pathogen invasion, we investigated if the exogenous application of SA would activate systemic acquired resistance (SAR) against A. solani in tomato leaves. The addition of 200 μM SA to the root system significantly increased the endogenous SA content of leaves. Free SA levels increased 65-fold over basal levels to 5.85 μg g-1 fresh weight (FW) after 48 h. This level of SA had no visible phytotoxic effects. Total SA content (free SA + SA-glucose conjugate) increased to 108 μg g-1 FW after 48 h. Concomitant with elevated SA levels, expression of the tomato pathogenesis-related (PR)-1B gene was strongly induced within 24 h of the addition of 200 μM SA. PR-1B expression was still evident after 48 h; however, PR-1B induction was not observed in plants not receiving SA treatment. Challenge inoculation of SA-treated tomato plants using conidia of A. solani resulted in 83% fewer lesions per leaf and a 77% reduction in blighted leaf area as compared with control plants not receiving SA. Our data indicate that root feeding 200 μM SA to tomato plants can (i) significantly elevate foliar SA levels, (ii) induce PR-1B gene expression, and (iii) activate SAR that is effective against A. solani.


2019 ◽  
Author(s):  
Stefan Kusch ◽  
Susanne Thiery ◽  
Anja Reinstädler ◽  
Katrin Gruner ◽  
Krzysztof Zienkiewicz ◽  
...  

The family of Mildew resistance Locus O (MLO) proteins is best known for its profound effect on the outcome of powdery mildew infections: when the appropriate MLO protein is absent, the plant is fully resistant to otherwise virulent powdery mildew fungi. However, most members of the MLO protein family remain functionally unexplored. Here, we investigateArabidopsis thaliana MLO3, the closest relative ofAtMLO2, AtMLO6andAtMLO12, which are the ArabidopsisMLOgenes implicated in the powdery mildew interaction. The co-expression network ofAtMLO3suggests association of the gene with plant defense-related processes such as salicylic acid homeostasis. Our extensive analysis shows thatmlo3mutants are unaffected regarding their infection phenotype upon challenge with the powdery mildew fungiGolovinomyces orontiiandErysiphe pisi, the oomyceteHyaloperonospora arabidopsidis, and the bacterial pathogenPseudomonas syringae(the latter both in terms of basal and systemic acquired resistance), indicating that the protein does not play a major role in the response to any of these pathogens. However,mlo3genotypes display spontaneous callose deposition as well as signs of early senescence in six-or seven-week-old rosette leaves in the absence of any pathogen challenge, a phenotype that is reminiscent ofmlo2mutant plants. We hypothesize that de-regulated callose deposition inmlo3genotypes is the result of a subtle transient aberration of salicylic acid-jasmonic acid homeostasis during development.


2019 ◽  
Vol 32 (3) ◽  
pp. 296-305 ◽  
Author(s):  
Mohammad Djavaheri ◽  
Lisong Ma ◽  
Daniel F. Klessig ◽  
Axel Mithöfer ◽  
Gordon Gropp ◽  
...  

The plant hormone salicylic acid (SA) plays a critical role in defense against biotrophic pathogens such as Plasmodiophora brassicae, which is an obligate pathogen of crucifer species and the causal agent of clubroot disease of canola (Brassica napus). P. brassicae encodes a protein, predicted to be secreted, with very limited homology to benzoic acid (BA)/SA–methyltransferase, designated PbBSMT. PbBSMT has a SA- and an indole-3-acetic acid–binding domain, which are also present in Arabidopsis thaliana BSMT1 (AtBSMT1) and, like AtBSMT1, has been shown to methylate BA and SA. In support of the hypothesis that P. brassicae uses PbBSMT to overcome SA-mediated defenses by converting SA into inactive methyl salicylate (MeSA), here, we show that PbBSMT suppresses local defense and provide evidence that PbBSMT is much more effective than AtBSMT1 at suppressing the levels of SA and its associated effects. Basal SA levels in Arabidopsis plants that constitutively overexpress PbBSMT compared with those in Arabidopsis wild-type Col-0 (WT) were reduced approximately 80% versus only a 50% reduction in plants overexpressing AtBSMT1. PbBSMT-overexpressing plants were more susceptible to P. brassicae than WT plants; they also were partially compromised in nonhost resistance to Albugo candida. In contrast, AtBSMT1-overexpressing plants were not more susceptible than WT to either P. brassicae or A. candida. Furthermore, transgenic Arabidopsis and tobacco plants overexpressing PbBSMT exhibited increased susceptibility to virulent Pseudomonas syringae pv. tomato DC3000 (DC3000) and virulent Pseudomonas syringae pv. tabaci, respectively. Gene-mediated resistance to DC3000/AvrRpt2 and tobacco mosaic virus (TMV) was also compromised in Arabidopsis and Nicotiana tabacum ‘Xanthi-nc’ plants overexpressing PbBSMT, respectively. Transient expression of PbBSMT or AtBSMT1 in lower leaves of N. tabacum Xanthi-nc resulted in systemic acquired resistance (SAR)-like enhanced resistance to TMV in the distal systemic leaves. Chimeric grafting experiments revealed that, similar to SAR, the development of a PbBSMT-mediated SAR-like phenotype was also dependent on the MeSA esterase activity of NtSABP2 in the systemic leaves. Collectively, these results strongly suggest that PbBSMT is a novel effector, which is secreted by P. brassicae into its host plant to deplete pathogen-induced SA accumulation.


2001 ◽  
Vol 25 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Keiko Yoshioka ◽  
Hideo Nakashita ◽  
Daniel F. Klessig ◽  
Isamu Yamaguchi

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gehendra Bhattarai ◽  
Wei Yang ◽  
Ainong Shi ◽  
Chunda Feng ◽  
Braham Dhillon ◽  
...  

Abstract Background Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. Results Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69–11.28 Kb of the peak SNP. Conclusions Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1661-1671
Author(s):  
Klaus Maleck ◽  
Urs Neuenschwander ◽  
Rebecca M Cade ◽  
Robert A Dietrich ◽  
Jeffery L Dangl ◽  
...  

Abstract To identify Arabidopsis mutants that constitutively express systemic acquired resistance (SAR), we constructed reporter lines expressing the firefly luciferase gene under the control of the SAR-inducible PR-1 promoter (PR-1/luc). After EMS mutagenesis of a well-characterized transgenic line, we screened 250,000 M2 plants for constitutive expression of the reporter gene in vivo. From a mutant collection containing several hundred putative mutants, we concentrated on 16 mutants lacking spontaneous hypersensitive response (HR) cell death. We mapped 4 of these constitutive immunity (cim) mutants to chromosome arms. Constitutive expression of disease resistance was established by analyzing responses to virulent Peronospora parasitica and Pseudomonas syringae strains, by RNA blot analysis for endogenous marker genes, and by determination of salicylic acid levels in the mutants. The variety of the cim phenotypes allowed us to define distinct steps in both the canonical SAR signaling pathway and a separate pathway for resistance to Erysiphe cichoracearum, active in only a subset of the mutants.


Sign in / Sign up

Export Citation Format

Share Document