On the importance of fine-scale sampling in detecting alpha taxonomic diversity among saproxylic invertebrates: A velvet worm (Onychophora:Opisthopatus amaxhosa) template

2019 ◽  
Vol 48 (2) ◽  
pp. 243-262 ◽  
Author(s):  
Aaron Barnes ◽  
Savel R. Daniels
2015 ◽  
Vol 73 (4) ◽  
Author(s):  
Helena Mendes-Soares ◽  
Vandhana Krishnan ◽  
Matthew L. Settles ◽  
Jacques Ravel ◽  
Celeste J. Brown ◽  
...  

Author(s):  
Russell L. Steere

Complementary replicas have revealed the fact that the two common faces observed in electron micrographs of freeze-fracture and freeze-etch specimens are complementary to each other and are thus the new faces of a split membrane rather than the original inner and outer surfaces (1, 2 and personal observations). The big question raised by published electron micrographs is why do we not see depressions in the complementary face opposite membrane-associated particles? Reports have appeared indicating that some depressions do appear but complementarity on such a fine scale has yet to be shown.Dog cardiac muscle was perfused with glutaraldehyde, washed in distilled water, then transferred to 30% glycerol (material furnished by Dr. Joaquim Sommer, Duke Univ., and VA Hospital, Durham, N.C.). Small strips were freeze-fractured in a Denton Vacuum DFE-2 Freeze-Etch Unit with complementary replica tooling. Replicas were cleaned in chromic acid cleaning solution, then washed in 4 changes of distilled water and mounted on opposite sides of the center wire of a Formvar-coated grid.


2020 ◽  
Vol 655 ◽  
pp. 185-198
Author(s):  
J Weil ◽  
WDP Duguid ◽  
F Juanes

Variation in the energy content of prey can drive the diet choice, growth and ultimate survival of consumers. In Pacific salmon species, obtaining sufficient energy for rapid growth during early marine residence is hypothesized to reduce the risk of size-selective mortality. In order to determine the energetic benefit of feeding choices for individuals, accurate estimates of energy density (ED) across prey groups are required. Frequently, a single species is assumed to be representative of a larger taxonomic group or related species. Further, single-point estimates are often assumed to be representative of a group across seasons, despite temporal variability. To test the validity of these practices, we sampled zooplankton prey of juvenile Chinook salmon to investigate fine-scale taxonomic and temporal differences in ED. Using a recently developed model to estimate the ED of organisms using percent ash-free dry weight, we compared energy content of several groups that are typically grouped together in growth studies. Decapod megalopae were more energy rich than zoeae and showed family-level variability in ED. Amphipods showed significant species-level variability in ED. Temporal differences were observed, but patterns were not consistent among groups. Bioenergetic model simulations showed that growth rate of juvenile Chinook salmon was almost identical when prey ED values were calculated on a fine scale or on a taxon-averaged coarse scale. However, single-species representative calculations of prey ED yielded highly variable output in growth depending on the representative species used. These results suggest that the latter approach may yield significantly biased results.


2019 ◽  
Vol 609 ◽  
pp. 151-161 ◽  
Author(s):  
CO Bennice ◽  
AP Rayburn ◽  
WR Brooks ◽  
RT Hanlon

2017 ◽  
Vol 569 ◽  
pp. 187-203 ◽  
Author(s):  
AM McInnes ◽  
PG Ryan ◽  
M Lacerda ◽  
J Deshayes ◽  
WS Goschen ◽  
...  

2016 ◽  
Vol 27 (3-4) ◽  
pp. 47-54
Author(s):  
K. K. Holoborodko ◽  
V. O. Makhina ◽  
K. S. Buchnieva ◽  
O. E. Pakhomov

Floodplain valley of the Dnieper river midstream is a unique natural complex, having a great bìogeographical, ecological, environmental, historical and recreational values. In 1990, the Natural reserve «Dniprovsko-Orilsky» was established within the area. The Natural reserve «Dniprovsko-Orilsky» is environmentally protected site within the Dnipropetrovsk region, Dnipropetrovsk oblast, Ukraine. This reserve occupies part of the Dnieper river valley and marshy and reedy banks of Protovch river (existing bed of Oril river). It was created by Regulation of the Council of Ministers of the USSR of 15 September 1990, No. 262, based on common zoological and ornitological Nature reserves «Taromskì plavni» and «Obukhovskie zaplavy». On the territory of the Natural reserve «Dniprovsko-Orilsky», they were registered 32 Lepidoptera species listed in the List of Threatened Species at different categories (5 species in IUCN Red List ; 18 in Red Data Book of Ukraine; 7 in European Red List of plants and animals endangered on a global scale; 31 in Red Book of Dnipropetrovsk oblast). The main scientific materials were author’s collections from area of research and materials of entomological funds, Department of Zoology and Ecology, Oles Honchar Dnipropetrovsk National University (mostly Memorial Collection of V. O. Barsov). Field surveys covered all the ecosystems basic on size and degree of protection. The author’s researches have conducted over the past decade during annual expeditions to the Reserve. Taxonomic structure of the complex is quite diverse, and represented by all the major families of higher millers and rhopalocera, having protectedstatus. In relation to taxonomy, this complex formed by representatives of five superfamilies (Zyganoidea, Noctuoidea, Bombycoidea, Hesperioidea, Papilionoidea) from 11 families (Zygaenidae, Saturniidae, Sphingidae, Noctuidae Arctiidae Hesperiidae, Papilionidae, Pieridae, Nymphalidae, Satyridae, Lycaenidae). High taxonomic diversity can be explained by unique geographical location of the reserve in azonal conditions of the Dnieper river valley. Such location allows to enter different zoogeographic Lepidoptera groups on the reserve territory. Zoogeographic analysis of species protected within the reserve territory selected 7 basic groups. It was found that most of the globally rare species have Mediterranean origin (39 %); species of Palearctic origin are in second place (22 %); Western Palearctic and Ponto-Kazakh types of areas are same of number of species, and come third (11 %); and others come 17 % (European, Euro-Siberian, and Holarctic). This fauna component is specific due to presence of so-called «northern» species that make up 40 % (representatives of Palearctic, Western Palearctic, Euro-Siberian, European and Holarctic groups). Their existence within the reserve territory is only possible due to development of boreal valley ecosystems. High taxonomic diversity can be explained by unique geographical location of the reserve in azonal conditions of the Dnieper river valley. Such location allows to enter different zoogeographic Lepidoptera groups on the reserve territory. Zoogeographic analysis of species protected within the reserve territory selected 7 basic groups. It was found that most of the globally rare species have Mediterranean origin (39 %); species of Palearctic origin are in second place (22 %); Western Palearctic and Ponto-Kazakh types of areas are same of number of species, and come third (11 %); and others come 17 % (European, Euro-Siberian, and Holarctic). This fauna component is specific due to presence of so-called «northern» species that make up 40 % (representatives of Palearctic, Western Palearctic, Euro-Siberian, European and Holarctic groups). Their existence within the reserve territory is only possible due to development of boreal valley ecosystems.


Sign in / Sign up

Export Citation Format

Share Document