SHAPE MEMORY INVESTIGATION OF SMART CAMAR LOGO USING NITI ALLOY WIRE

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Muhammad Safwan Shuhaimi ◽  
Nubailah Abd. Hamid ◽  
Rosliza Razali ◽  
Muhammad Hussain Ismail

This project is investigates of NiTi shape memory alloy for simple smart application. The shape memory effect (SME) is attributed from the reversible phase transformation when subjected to stress and temperature. In this study, a small model of CAMAR logo was designed to mimic the shape memory effect. Three samples of wire were investigated; (i) Austenitic NiTi (ii) Martensitic NiTi and (iii) commercial plain carbon steel. The reversible austenite to martensite transformation of the NiTi wire was investigated by a differential scanning calorimetry (DSC) at temperatures ranging from -50 and 200oC. The wire was shaped into CAMAR logo using a mould and then heated at 500°C for 30 minutes in a high temperature furnace. To observe the shape effect recovery, the wire was straighten and reheated in warm water at different temperatures. Results showed that the austenitic wire exhibited complete shape memory recovery after heated at temperature approximately 35°C and  80°C. For the martensitic wire, complete recovery was only observed when the water temperature was ~ 80°C and no recovery was observed at ~30°C. This recovery effect was significantly influenced by the reversible phase transformation temperatures (PTTs) which attributed from the Austenite finish (Af) temperature.

2021 ◽  
Vol 11 (4) ◽  
pp. 1802
Author(s):  
Sneha Samal ◽  
Orsolya Molnárová ◽  
Filip Průša ◽  
Jaromír Kopeček ◽  
Luděk Heller ◽  
...  

An analysis of the shape memory effect of a NiTi alloy by using the spark plasma sintering approach has been carried out. Spark plasma sintering of Ti50Ni50 powder (20–63 µm) at a temperature of 900 °C produced specimens showing good shape memory effects. However, the sample showed 2.5% porosity due to a load of 48 MPa. Furthermore, an apparent shape memory effect was recorded and the specimens were characterized by uniformity in chemical composition and shape memory alloys of NiTi showed significant austenite phases with a bending strain recovery of >2.5%.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450063 ◽  
Author(s):  
Riccardo Casati ◽  
Carlo Alberto Biffi ◽  
Maurizio Vedani ◽  
Ausonio Tuissi

In this research, the high performance shape memory effect (HP-SME) is experimented on a shape memory NiTi wire, with austenite finish temperature higher than room temperature. The HP-SME consists in the thermal cycling of stress induced martensite and it allows achieving mechanical work higher than that produced by conventional shape memory actuators based on the heating/cooling of detwinned martensite. The Nitinol wire was able to recover about 5.5% of deformation under a stress of 600 MPa and to withstand about 5000 cycles before failure. HP-SME path increased the operating temperature of the shape memory actuator wire. Functioning temperatures higher than 100°C was reached.


2020 ◽  
Vol 6 (2) ◽  
pp. 170-180 ◽  
Author(s):  
Yoko Yamabe-Mitarai ◽  
Brandon Ohl ◽  
Karolina Bogdanowicz ◽  
Ewelina Muszalska

2011 ◽  
Vol 123 (2) ◽  
pp. 749-762 ◽  
Author(s):  
Jianping Han ◽  
Yong Zhu ◽  
Jinlian Hu ◽  
Hongsheng Luo ◽  
Lap-Yan Yeung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document