THE EFFECT OF JAMMING ATTACK DETECTION AND MITIGATION ON ENERGY POWER CONSUMPTION (CASE STUDY IEEE 802.11 WIRELESS AD HOC NETWORK)

2015 ◽  
Vol 77 (22) ◽  
Author(s):  
Nur Cahyono Kushardianto ◽  
Yudhi Kusnanto ◽  
Elvian Syafrurizal ◽  
Ahmad Hamim Tohari

Quality of Service for data traffic is an important facet of a network, which in the case of a wireless network can easily be disrupted by applying a device to broadcast signals.  The authors believe that the increased of the energy consumption, when a jamming attack occurs, can be used as a guiding indicator in order to mitigate the attack. The authors show that when a reactive jamming attack occurs on a wireless network unmitigated, it can easily block the entire data traffic to the point there is no data can be delivered. The authors also show that, using NS3 simulation, in an event where a reactive jamming attack to the network happened, the source of the attack can be identified through the increased of energy consumption , and successfully mitigated by avoiding sending data traffic through the same channel used by the attacker, by executing channel hopping.  

Author(s):  
Aarti Sahu ◽  
Laxmi Shrivastava

A wireless ad hoc network is a decentralized kind of wireless network. It is a kind of temporary Computer-to-Computer connection. It is a spontaneous network which includes mobile ad-hoc network (MANET), vehicular ad-hoc network (VANET) and Flying ad-hoc network (FANET). Mobile Ad Hoc Network (MANET) is a temporary network that can be dynamically formed to exchange information by wireless nodes or routers which may be mobile. A VANET is a sub form of MANET. It is an technology that uses vehicles as nodes in a network to make a mobile network. FANET is an ad-hoc network of flying nodes. They can fly independently or can be operated distantly. In this research paper Fuzzy based control approaches in wireless network detects & avoids congestion by developing the ad-hoc fuzzy rules as well as membership functions.In this concept, two parameters have been used as: a) Channel load b) The size of queue within intermediate nodes. These parameters constitute the input to Fuzzy logic controller. The output of Fuzzy logic control (sending rate) derives from the conjunction with Fuzzy Rules Base. The parameter used input channel load, queue length which are produce the sending rate output in fuzzy logic. This fuzzy value has been used to compare the MANET, FANET and VANET in terms of the parameters Throughput, packet loss ratio, end to end delay. The simulation results reveal that usage of Qual Net 6.1 simulator has reduced packet-loss in MANET with comparing of VANET and FANET.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 38-41
Author(s):  
Hari Shankar Sahu ◽  
Rupanita Das

Now a days telecommunication technology leads to a rapid growth of number of users, these number of users nothing but number of nodes in MANET.A wireless ad hoc network is a decentralized type of wireless network. The mobility of nodes effect on the performance of the network. Due to mobility of nodes the link breaks number of times which effect on the packet delivery. Therefore to analyze the performance, packet delivery fraction (PDF)can be used. This paper describe the packet delivery fraction of on demand routing protocol AODV and DSR on different terrain areas using GLOMOSIM.


2012 ◽  
Vol 466-467 ◽  
pp. 425-429
Author(s):  
Qi Zhang ◽  
Hai Jun Xiong

Multicast routing technology of Ad hoc network is a method of transferring specific data to a group of clients selectively; therefore, quality of the services is the key to evaluate the method. After the analysis of energy model and other routing algorithms ,an energy model and a balanced energy network multicast routing algorithm EBAMRA have been proposed in this article,. Experiments had been done, the simulation results show that this algorithm is feasible and effective, which provides a new and effective way of Ad hoc multicast routing technology.


2018 ◽  
Vol 7 (2) ◽  
pp. 674
Author(s):  
Rakesh Sahu ◽  
Narendra Chaudhari

Energy consumption of nodes during the transmission is an important factor for the efficiency and lifetime of a mobile ad hoc network. The reduction in consumption of energy can be achieved, only when its consumption at each step is known. The purpose of this paper is to formulate the mathematical model of energy consumption of network on the basis on links and available nodes in order to formulate the energy optimization function. The probability of link failure in route and innetwork have been taken into consideration as constraints while formulating the objective function of estimated energy consumption, as the low connectivity is one of the challenges due to mobility in ad hoc network.


2017 ◽  
Vol 2 (4) ◽  
pp. 331 ◽  
Author(s):  
Ilker Bekmezci ◽  
Fatih Alagoz

The scarcest resource for most of the wireless sensor networks (WSNs) is energy and one of the major factors inenergy consumption for WSNs is due to communication. Notonly transmission but also reception is the source of energyconsumption. The lore to decrease energy consumption is toturn off radio circuit when it is not needed. This is why TDMA has advantages over contention based methods. Time slot assignment algorithm is an essential part of TDMA based systems. Although centralized time slot assignment protocols are preferred in many WSNs, centralized approach is not scalable. In this paper, a new energy efficient and delay sensitive distributed time slot assignment algorithm (DTSM) is proposed for sensor networks under convergecast traffic pattern. DTSM which is developed as part of the military monitory (MILMON) system introduced in [27], aims to operate with low delay and low energy. Instead of collision based periods, it assigns slots by the help of tiny request slots. While traditional slot assignment algorithms do not allow assigning the same slot within two hop neighbors, because of the hidden node problem, DTSM can assign, if assignment is suitable for convergecast traffic. Simulation results have shown that delay and energy consumption performance of DTSM is superior to FPRP, DRAND, and TRAMA which are the most known distributed slot assignment protocols for WSNs or ad hoc networks. Although DTSM has somewhat long execution time, itsscalability characteristic may provide application specific time durations.


Author(s):  
Sukant Kishoro Bisoy ◽  
Prasant Kumar Pattnaik

The Transmission Control Protocol (TCP) is a reliable protocol of transport layer which delivers data over unreliable networks. It was designed in the context of wired networks. Due to popularity of wireless communication it is made to extend TCP protocol to wireless environments where wired and wireless network can work smoothly. Although TCP work in wireless and wired-cum-wireless network, the performance is not up to the mark. In literature lot of protocols has been proposed to adopt TCP in wireless mobile ad hoc network. In this, we present an overall view on this issue and detailed discussion of the major factors involved. In addition, we survey the main proposals which aim at adapting TCP to mobile and static Ad hoc environments. Specifically, we show how TCP can be affected by mobility and its interaction with routing protocol in static and dynamic wireless ad hoc network.


Sign in / Sign up

Export Citation Format

Share Document