dynamic source routing
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Salman Ali Syed ◽  
Shahzad Ali

Secure data transfer in mobile ad hoc network (MANET) against malicious attacks is of immense importance. In this paper, we propose a new enhanced trust model for securing the MANET using trust-based scheme that uses both blind trust and referential trust. In order to do this, the trust relationship function has to be integrated with the dynamic source routing (DSR) protocol for making the protocol more secure. We thoroughly analyze the DSR protocol and generate the performance matrices for the data pertaining to packets sent, packets received, packets loss, and throughput. We also analyze the outcome attained from the improvised trust establishment scheme by using the three algorithm implementations in NS2 simulator for detecting and preventing various types of attacks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251548
Author(s):  
Qing Liang ◽  
Tian Lin ◽  
Feng Wu ◽  
Fan Zhang ◽  
Wei Xiong

The two most essential factors for mobile self-organizing networks applicable to drones are reliability and stability. In harsh communication environments, such as mountainous regions and natural disasters, the use of satellites and terrestrial communication stations has severe time delays due to the high speed of UAVs, resulting in frequent communication interruptions with UAVs. Therefore, UAVs need to establish self-organizing networks for communication and information sharing. High-speed movement will lead to rapid changes in the network topology, resulting in established links being in an unstable connection state and even frequent routing errors, thus preventing the establishment of stable communication links. In order to improve the communication quality of UAVs under high-speed movement, we propose a dynamic source routing protocol based on path reliability and monitoring repair mechanism (DSR-PM). The model performs data transmission by filtering the best reliability path. The link state information is monitored during transmission and broken links are repaired in time to ensure the communication stability and reliability of the links and improve the data transmission efficiency. We simulated the approach in NS2 software and the simulation results show that the DSR-PM protocol effectively reduces parameters such as overhead, packet loss and delay, improves network throughput, and provides better communication performance.


Author(s):  
Waqas Khan

Mobile Ad-Hoc Networks (MANETs) are a collection of mobile nodes which are free to move from one place to another place without a central control entity. In MANETs the nodes are dependent on each other and the communication among mobile nodes is multi-hop due to which there are security issues in the MANETs protocols. Optimized Link State Routing (OLSR) and Dynamic Source Routing (DSR) protocols are mostly used as proactive and reactive routing protocols in MANETs. This research work analyzed the performance of the OLSR and DSR protocols in the presence and absence of black hole (BH) attack in terms of throughput, end-to-end delay, packet delivery ratio (PDR), and network load in various scenarios using OPNET Modeler 14.5 simulator. The results obtained in this research show that BH attack significantly degrades the performance of both DSR and OLSR protocols but due to the reactive nature of DSR routing protocol the performance is more degraded in DSR routing protocol as compared to OLSR routing protocol in the presence of BH attack.


Author(s):  
Ankit Kumar ◽  
Madhavi Sinha

Background and Objective: The present issues which are faced by the transport systems include enormous traffic jams and congestion, unexpected road accidents, unwanted time delays, pedestrians' crossings on main roads, wastage of fuel and many more. ITS, along with some other technologies, work together to overcome such factors contributing to a much more desirable transport system. This paper aims to identify the security measures that could increase the security of the routing protocol and improve the performance of DSR routing protocol. If the number of establishing links is frequently broken, then the performance of DSR routing protocol is not very good. A new modified DSR algorithm has been designed that would help in reducing the network overhead and increase the network quality. A comparison between the performances of both algorithms has also been studied, and the results show that improved DSR routing protocol has better efficiency in parameters like end-to-end network load delays and packet delivery ratio. Methods & Materials: The paper mainly focuses on securing Dynamic Source routing algorithm by designing its modified version and simulating it. We have Proposed Modified DSR and discussed so far that the basic functionality of the DSR algorithm, its advantages and disadvantages. The main drawbacks include the end-to-end Delay, network overhead and packet delivery ratio. Following is a modified version of the dynamic source routing algorithm which tries to overcome all the limitations of the basic algorithm at a certain level. In Dynamic Source Routing algorithm, the Route Maintenance phase is used for the successful propagation of the packet within the network. The nodes that are involved in the transmission acknowledge the receiving of the packet to the preceding node. Results and Discussion: The present study aims at modifying the existing algorithm and designing a new modified algorithm which has less routing overhead, less Delay in packet transmission and high network quality. Modified DSR routing algorithm is examined on the parameters like E-2-E delay, Normalize Routing Overhead, PDR. When we compare the performance the proposed method with Existing protocol AODV, and DSR at a number of nodes equal to 50 then we get the Proposed DSR which has least end-to-end Delay among all the three protocols. Conclusion: In this paper, Comparison of Exiting DSR and Modified DSR in terms of end-to-end Delay, routing load and packet delivery ratio is done. After studying the readings, the conclusion drawn was that there are less network overhead and high delivery ratio in modified DSR as compared to the existing DSR algorithm. The corrupted and destroyed packets are detected by the receiver, and in DSR, the mobility of mobile nodes are moderate. Under certain conditions, bidirectional and unidirectional links can be accepted. DSR routing protocols are highly dependent on the parameters such as area size, packet size, packet type, and others.


Sign in / Sign up

Export Citation Format

Share Document