scholarly journals The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models over particulate matter (PM10) variability during haze and non-haze episodes: A decade case study

2019 ◽  
Vol 15 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Ku Mohd Kalkausar Ku Yusof ◽  
Azman Azid ◽  
Muhamad Shirwan Abdullah Sani ◽  
Mohd Saiful Samsudin ◽  
Siti Noor Syuhada Muhammad Amin ◽  
...  

The comprehensives of particulate matter studies are needed in predicting future haze occurrences in Malaysia. This paper presents the application of Artificial Neural Networks (ANN) and Multiple Linear Regressions (MLR) coupled with sensitivity analysis (SA) in order to recognize the pollutant relationship status over particulate matter (PM10) in eastern region. Eight monitoring studies were used, involving 14 input parameters as independent variables including meteorological factors. In order to investigate the efficiency of ANN and MLR performance, two different weather circumstances were selected; haze and non-haze. The performance evaluation was characterized into two steps. Firstly, two models were developed based on ANN and MLR which denoted as full model, with all parameters (14 variables) were used as the input. SA was used as additional feature to rank the most contributed parameter to PM10 variations in both situations. Next, the model development was evaluated based on selected model, where only significant variables were selected as input. Three mathematical indices were introduced (R2, RMSE and SSE) to compare on both techniques. From the findings, ANN performed better in full and selected model, with both models were completely showed a significant result during hazy and non-hazy. On top of that, UVb and carbon monoxide were both variables that mutually predicted by ANN and MLR during hazy and non-hazy days, respectively. The precise predictions were required in helping any related agency to emphasize on pollutant that essentially contributed to PM10 variations, especially during haze period.

2021 ◽  
Vol 10 (4) ◽  
pp. 68-76
Author(s):  
Younes Chiba ◽  
Yacine Marif ◽  
Noureddine Henini ◽  
Abdelhalim Tlemcani

The aim of this work is to use multi-layered perceptron artificial neural networks and multiple linear regressions models to predict the efficiency of the magnetic refrigeration cycle device operating near room temperature. For this purpose, the experimental data collection was used in order to predict coefficient of performance and temperature span for active magnetic refrigeration device. In addition, the operating parameters of active magnetic refrigerator cycle are used for solid magnetocaloric material under application 1.5 T magnetic fields. The obtained results including temperature span and coefficient of performance are presented and discussed.


Urban Climate ◽  
2021 ◽  
Vol 37 ◽  
pp. 100837
Author(s):  
Seyedeh Reyhaneh Shams ◽  
Ali Jahani ◽  
Saba Kalantary ◽  
Mazaher Moeinaddini ◽  
Nematollah Khorasani

2021 ◽  
Vol 43 (5) ◽  
Author(s):  
Amin Taheri-Garavand ◽  
Abdolhossein Rezaei Nejad ◽  
Dimitrios Fanourakis ◽  
Soodabeh Fatahi ◽  
Masoumeh Ahmadi Majd

2021 ◽  
Vol 11 (15) ◽  
pp. 6723
Author(s):  
Ariana Raluca Hategan ◽  
Romulus Puscas ◽  
Gabriela Cristea ◽  
Adriana Dehelean ◽  
Francois Guyon ◽  
...  

The present work aims to test the potential of the application of Artificial Neural Networks (ANNs) for food authentication. For this purpose, honey was chosen as the working matrix. The samples were originated from two countries: Romania (50) and France (53), having as floral origins: acacia, linden, honeydew, colza, galium verum, coriander, sunflower, thyme, raspberry, lavender and chestnut. The ANNs were built on the isotope and elemental content of the investigated honey samples. This approach conducted to the development of a prediction model for geographical recognition with an accuracy of 96%. Alongside this work, distinct models were developed and tested, with the aim of identifying the most suitable configurations for this application. In this regard, improvements have been continuously performed; the most important of them consisted in overcoming the unwanted phenomenon of over-fitting, observed for the training data set. This was achieved by identifying appropriate values for the number of iterations over the training data and for the size and number of the hidden layers and by introducing of a dropout layer in the configuration of the neural structure. As a conclusion, ANNs can be successfully applied in food authenticity control, but with a degree of caution with respect to the “over optimization” of the correct classification percentage for the training sample set, which can lead to an over-fitted model.


2021 ◽  
Vol 217 ◽  
pp. 181-194
Author(s):  
Hichem Tahraoui ◽  
Abd-Elmouneïm Belhadj ◽  
Adhya-eddine Hamitouche ◽  
Mounir Bouhedda ◽  
Abdeltif Amrane

Sign in / Sign up

Export Citation Format

Share Document