scholarly journals Impact of communication delay on distributed load frequency control (dis-LFC) in multi-area power system (MAPS)

2019 ◽  
Vol 15 (4) ◽  
pp. 626-632 ◽  
Author(s):  
Auwal Mustapha Imam ◽  
Kashif Chaudhary ◽  
Abdullahi Bala Kunya ◽  
Zuhaib Rizvi ◽  
Jalil Ali

AIn this paper, impact of communication delay on distributed load frequency control (dis-LFC) of multi-area interconnected power system (MAIPS) is investigated. Load frequency control (LFC), as one of ancillary services, is aimed at maintaining system frequency and inter-area tie-line power close to the scheduled values, by load reference set-point manipulation and consideration of the system constraints. Centralized LFC (cen-LFC) requires inherent communication bandwidth limitations, stability and computational complexity, as such, it is not a good technique for the control of large-scale and geographically wide power systems. To decrease the system dimensionality and increase performance efficiency, distributed and decentralized control techniques are adopted. In distributed LFC (dis-LFC) of MAIPS, each control area (CA) is equipped with a local controller and are made to exchange their control actions by communication with controllers in the neighboring areas. The delay in this communication can affect the performance of the LFC scheme and in a worst case deteriorates power system stability. To investigate the impact of this delay, model predictive controller (MPC) is employed in the presence of constraints and external disturbances to serve as LFC tracking control. The scheme discretizes the system and solves an on-line optimization at each time sample. The system is subjected to communication delay between the CAs, and the response to the step load perturbation with and without the delay. Time-based simulations were used on a three-area MAIPS in MATLAB/SIMULINK environment to verify the investigations. The overshoot and settling time in the results reveals deterioration of the control performance with delay.  Also, the dis-LFC led to zero steady states errors for frequency deviations and enhanced the MAIPS’ performance. With this achievement, MPC proved its constraints handling capability, online rolling optimization and ability to predict future behavior of systems.

2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

Author(s):  
Muhammad Nizam Kamarudin ◽  
Nabilah Shaharudin ◽  
Noor Haqkimi Abd Rahman ◽  
Mohd Hendra Hairi ◽  
Sahazati Md. Rozali ◽  
...  

Author(s):  
Sontaya Manmai ◽  
Sillawat Romphochai ◽  
Natin Janjamraj ◽  
Surin Ngaemngam ◽  
Krischonme Bhumkittipich

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Ashraf M. Abdelhamid ◽  
Ahmed A. M. El-Gaafary

Many studies have been made in the field of load frequency control (LFC) through the last few decades because of its importance to healthy power system. It is important to maintain frequency deviation at zero level after a load perturbation. In decentralized control, the multi-area power system is decomposed into many single input single output (SISO) subsystems and a local controller is designed for each subsystem. The controlled subsystems may have slow poles; these undesired poles may drive the aggregated overall system into the instability region. Thus, it is required to relocate these poles to much more stable places to avoid their effect upon the overall system stability. This study aims to design a new load frequency controller based on the powerful optimal linear quadratic regulator (LQR) technique. This technique can be applied over subsystem level to shift each subsystem undesired poles one by one into a prespecified stable location which in turn shift the overall system slow poles and reduce the effect of the interaction between the interconnected subsystems among each other. This procedure must be applied many times as the number of undesired poles (pairs) until all the desired poles are achieved. The main objective is considered to get a robust design when the system is affected by a physical disturbance and ±40% model uncertainties. LQR can be applied again over the aggregated system to enhance the stability degree. Simulation results are used to evaluate the effectiveness of the proposed method and compared to other research results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangjie Liu ◽  
Huiyun Nong ◽  
Ke Xi ◽  
Xiuming Yao

Considering the load frequency control (LFC) of large-scale power system, a robust distributed model predictive control (RDMPC) is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints (GRC) is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem is formulated as convex optimization problem with linear matrix inequalities (LMI) that can be solved efficiently. It minimizes an upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness in the presence of power system dynamic uncertainties.


This paper present’s the study of Load Frequency Control (LFC) with certain nonlinear parameters at different communication delay latencies. The main aim is to maintain the stability of power system in all the adverse conditions including time delays in the network. Here, the stability of the system is demonstrated using Lyapuonav stability theorem in the presence of Delay’s and Linear Matrix Inequalities (LMI). Time delays are taken in the network. These delay latencies are linearized using the rational approximation method. Here Padé approximation is used with different time delay values. The problem is formulated using a decentralized LFC approach for a power system containing a single area. Simulation results carried out with different delay latency values integrated with the Load frequency control LMI and rigorous analysis is performed to test the robustness of the proposed strategy


Sign in / Sign up

Export Citation Format

Share Document