An Identity Relating a Theta Function to a Sum of Lambert Series

2001 ◽  
Vol 33 (1) ◽  
pp. 25-31 ◽  
Author(s):  
George E. Andrews ◽  
Richard Lewis ◽  
Zhi-Guo Liu
2020 ◽  
Vol 9 (7) ◽  
pp. 4929-4936
Author(s):  
D. Anu Radha ◽  
B. R. Srivatsa Kumar ◽  
S. Udupa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2020 ◽  
Vol 102 (1) ◽  
pp. 39-49
Author(s):  
ZHI-HONG SUN

Let $\mathbb{Z}$ and $\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For $a,b,c,d,n\in \mathbb{Z}^{+}$, let $t(a,b,c,d;n)$ be the number of representations of $n$ by $\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with $x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for $t(a,b,c,d;n)$ and evaluate $t(2,3,3,8;n)$, $t(1,1,6,24;n)$ and $t(1,1,6,8;n)$.


2017 ◽  
Vol 13 (08) ◽  
pp. 2097-2113 ◽  
Author(s):  
Shubho Banerjee ◽  
Blake Wilkerson

We study the Lambert series [Formula: see text], for all [Formula: see text]. We obtain the complete asymptotic expansion of [Formula: see text] near [Formula: see text]. Our analysis of the Lambert series yields the asymptotic forms for several related [Formula: see text]-series: the [Formula: see text]-gamma and [Formula: see text]-polygamma functions, the [Formula: see text]-Pochhammer symbol and the Jacobi theta functions. Some typical results include [Formula: see text] and [Formula: see text], with relative errors of order [Formula: see text] and [Formula: see text] respectively.


2017 ◽  
Vol 25 ◽  
pp. 159-174 ◽  
Author(s):  
Laura Galli ◽  
Adam N. Letchford
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
David W. Pravica ◽  
Njinasoa Randriampiry ◽  
Michael J. Spurr

The family ofnth orderq-Legendre polynomials are introduced. They are shown to be obtainable from the Jacobi theta function and to satisfy recursion relations and multiplicatively advanced differential equations (MADEs) that are analogues of the recursion relations and ODEs satisfied by thenth degree Legendre polynomials. Thenth orderq-Legendre polynomials are shown to have vanishingkth moments for0≤k<n, as does thenth degree truncated Legendre polynomial. Convergence results are obtained, approximations are given, a reciprocal symmetry is shown, and nearly orthonormal frames are constructed. Conditions are given under which a MADE remains a MADE under inverse Fourier transform. This is used to construct new wavelets as solutions of MADEs.


Sign in / Sign up

Export Citation Format

Share Document