scholarly journals Lifting, restricting and sifting integral points on affine homogeneous varieties

2012 ◽  
Vol 148 (6) ◽  
pp. 1695-1716 ◽  
Author(s):  
Alexander Gorodnik ◽  
Amos Nevo

AbstractIn [Gorodnik and Nevo,Counting lattice points, J. Reine Angew. Math.663(2012), 127–176] an effective solution of the lattice point counting problem in general domains in semisimpleS-algebraic groups and affine symmetric varieties was established. The method relies on the mean ergodic theorem for the action ofGonG/Γ, and implies uniformity in counting over families of lattice subgroups admitting a uniform spectral gap. In the present paper we extend some methods developed in [Nevo and Sarnak,Prime and almost prime integral points on principal homogeneous spaces, Acta Math.205(2010), 361–402] and use them to establish several useful consequences of this property, including:(1)effective upper bounds on lifting for solutions of congruences in affine homogeneous varieties;(2)effective upper bounds on the number of integral points on general subvarieties of semisimple group varieties;(3)effective lower bounds on the number of almost prime points on symmetric varieties;(4)effective upper bounds on almost prime solutions of congruences in homogeneous varieties.

2020 ◽  
Vol 156 (12) ◽  
pp. 2628-2649
Author(s):  
Yang Cao ◽  
Zhizhong Huang

In this article we establish the arithmetic purity of strong approximation for certain semisimple simply connected linear algebraic groups and their homogeneous spaces over a number field $k$. For instance, for any such group $G$ and for any open subset $U$ of $G$ with ${\mathrm {codim}}(G\setminus U, G)\geqslant 2$, we prove that (i) if $G$ is $k$-simple and $k$-isotropic, then $U$ satisfies strong approximation off any finite number of places; and (ii) if $G$ is the spin group of a non-degenerate quadratic form which is not compact over archimedean places, then $U$ satisfies strong approximation off all archimedean places. As a consequence, we prove that the same property holds for affine quadratic hypersurfaces. Our approach combines a fibration method with subgroup actions developed for induction on the codimension of $G\setminus U$, and an affine linear sieve which allows us to produce integral points with almost-prime polynomial values.


2010 ◽  
Vol 205 (2) ◽  
pp. 361-402 ◽  
Author(s):  
Amos Nevo ◽  
Peter Sarnak

2019 ◽  
Vol 33 (4) ◽  
pp. 2315-2336
Author(s):  
Inna M. Asymont ◽  
Dmitry Korshunov

Abstract For an arbitrary transient random walk $$(S_n)_{n\ge 0}$$ ( S n ) n ≥ 0 in $${\mathbb {Z}}^d$$ Z d , $$d\ge 1$$ d ≥ 1 , we prove a strong law of large numbers for the spatial sum $$\sum _{x\in {\mathbb {Z}}^d}f(l(n,x))$$ ∑ x ∈ Z d f ( l ( n , x ) ) of a function f of the local times $$l(n,x)=\sum _{i=0}^n{\mathbb {I}}\{S_i=x\}$$ l ( n , x ) = ∑ i = 0 n I { S i = x } . Particular cases are the number of visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function $$f(i)={\mathbb {I}}\{i\ge 1\}$$ f ( i ) = I { i ≥ 1 } ; $$\alpha $$ α -fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to $$f(i)=i^\alpha $$ f ( i ) = i α ; sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where $$f(i)={\mathbb {I}}\{i=j\}$$ f ( i ) = I { i = j } .


1985 ◽  
Vol 37 (3) ◽  
pp. 467-487 ◽  
Author(s):  
Carolyn S. Gordon

The simple algebraic and geometric properties of naturally reductive metrics make them useful as examples in the study of homogeneous Riemannian manifolds. (See for example [2], [3], [15]). The existence and abundance of naturally reductive left-invariant metrics on a Lie group G or homogeneous space G/L reflect the structure of G itself. Such metrics abound on compact groups, exist but are more restricted on noncompact semisimple groups, and are relatively rare on solvable groups. The goals of this paper are(i) to study all naturally reductive homogeneous spaces of G when G is either semisimple of noncompact type or nilpotent and(ii) to give necessary conditions on a Riemannian homogeneous space of an arbitrary Lie group G in order that the metric be naturally reductive with respect to some transitive subgroup of G.


Author(s):  
Reynold Fregoli

Abstract We give a precise estimate for the number of lattice points in certain bounded subsets of $\mathbb{R}^{n}$ that involve “hyperbolic spikes” and occur naturally in multiplicative Diophantine approximation. We use Wilkie’s o-minimal structure $\mathbb{R}_{\exp }$ and expansions thereof to formulate our counting result in a general setting. We give two different applications of our counting result. The 1st one establishes nearly sharp upper bounds for sums of reciprocals of fractional parts and thereby sheds light on a question raised by Lê and Vaaler, extending previous work of Widmer and of the author. The 2nd application establishes new examples of linear subspaces of Khintchine type thereby refining a theorem by Huang and Liu. For the proof of our counting result, we develop a sophisticated partition method that is crucial for further upcoming work on sums of reciprocals of fractional parts over distorted boxes.


2014 ◽  
Vol 8 (1) ◽  
pp. 25-59 ◽  
Author(s):  
Alexander Gorodnik ◽  
◽  
Frédéric Paulin ◽  

2005 ◽  
Vol 78 (1) ◽  
pp. 109-147
Author(s):  
C. M. P. A. Smulders

AbstractLet a1… ad be a basis of the Lie algebra g of a connected Lie group G and let M be a Lie subgroup of,G. If dx is a non-zero positive quasi-invariant regular Borel measure on the homogeneous space X = G/M and S: X × G → C is a continuous cocycle, then under a rather weak condition on dx and S there exists in a natural way a (weakly*) continuous representation U of G in Lp (X;dx) for all p ε [1,].Let Ai be the infinitesimal generator with respect to U and the direction ai, for all i ∈ { 1… d}. We consider n–th order strongly elliptic operators H = ΣcαAα with complex coefficients cα. We show that the semigroup S generated by the closure of H has a reduced heat kernel K and we derive upper bounds for k and all its derivatives.


2018 ◽  
Vol 62 (3) ◽  
pp. 551-563
Author(s):  
Jörg Jahnel ◽  
Damaris Schindler

AbstractGiven systems of two (inhomogeneous) quadratic equations in four variables, it is known that the Hasse principle for integral points may fail. Sometimes this failure can be explained by some integral Brauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer group for a family of such systems and show that the failure of the integral Hasse principle due to an algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the number of exceptions.


2018 ◽  
Vol 30 (3) ◽  
pp. 767-773 ◽  
Author(s):  
Wataru Takeda ◽  
Shin-ya Koyama

AbstractWe estimate the number of relatively r-prime lattice points in {K^{m}} with their components having a norm less than x, where K is a number field. The error terms are estimated in terms of x and the discriminant D of the field K, as both x and D grow. The proof uses the bounds of Dedekind zeta functions. We obtain uniform upper bounds as K runs through number fields of any degree under assuming the Lindelöf hypothesis. We also show unconditional results for abelian extensions with a degree less than or equal to 6.


2009 ◽  
Vol 145 (2) ◽  
pp. 309-363 ◽  
Author(s):  
Jean-Louis Colliot-Thélène ◽  
Fei Xu

AbstractAn integer may be represented by a quadratic form over each ring ofp-adic integers and over the reals without being represented by this quadratic form over the integers. More generally, such failure of a local-global principle may occur for the representation of one integral quadratic form by another integral quadratic form. We show that many such examples may be accounted for by a Brauer–Manin obstruction for the existence of integral points on schemes defined over the integers. For several types of homogeneous spaces of linear algebraic groups, this obstruction is shown to be the only obstruction to the existence of integral points.


Sign in / Sign up

Export Citation Format

Share Document