scholarly journals Glicci ideals

2013 ◽  
Vol 149 (9) ◽  
pp. 1583-1591 ◽  
Author(s):  
Juan Migliore ◽  
Uwe Nagel

AbstractA central problem in liaison theory is to decide whether every arithmetically Cohen–Macaulay subscheme of projective $n$-space can be linked by a finite number of arithmetically Gorenstein schemes to a complete intersection. We show that this can indeed be achieved if the given scheme is also generically Gorenstein and we allow the links to take place in an $(n+ 1)$-dimensional projective space. For example, this result applies to all reduced arithmetically Cohen–Macaulay subschemes. We also show that every union of fat points in projective 3-space can be linked in the same space to a union of simple points in finitely many steps, and hence to a complete intersection in projective 4-space.

2020 ◽  
Vol 126 (3) ◽  
pp. 493-496
Author(s):  
David Stapleton

The point of this paper is to give a short, direct proof that rank $2$ toric vector bundles on $n$-dimensional projective space split once $n$ is at least $3$. This result is originally due to Bertin and Elencwajg, and there is also related work by Kaneyama, Klyachko, and Ilten-Süss. The idea is that, after possibly twisting the vector bundle, there is a section which is a complete intersection.


2005 ◽  
Vol 57 (2) ◽  
pp. 400-415
Author(s):  
Sindi Sabourin

AbstractIn this paper, we find configurations of points in n-dimensional projective space (Pn) which simultaneously generalize both k-configurations and reduced 0-dimensional complete intersections. Recall that k-configurations in P2 are disjoint unions of distinct points on lines and in Pn are inductively disjoint unions of k-configurations on hyperplanes, subject to certain conditions. Furthermore, the Hilbert function of a k-configuration is determined from those of the smaller k-configurations. We call our generalized constructions kD-configurations, where D = {d1, … , dr} (a set of r positive integers with repetition allowed) is the type of a given complete intersection in Pn. We show that the Hilbert function of any kD-configuration can be obtained from those of smaller kD-configurations. We then provide applications of this result in two different directions, both of which are motivated by corresponding results about k-configurations.


2011 ◽  
Vol 22 (04) ◽  
pp. 515-534 ◽  
Author(s):  
IUSTIN COANDĂ

We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].


1952 ◽  
Vol 48 (3) ◽  
pp. 383-391
Author(s):  
T. G. Room

This paper falls into three sections: (1) a system of birational transformations of the projective plane determined by plane cubic curves of a pencil (with nine associated base points), (2) some one-many transformations determined by the pencil, and (3) a system of birational transformations of three-dimensional projective space determined by the elliptic quartic curves through eight associated points (base of a net of quadric surfaces).


In this paper a (2j + l)-spinor analysis is developed along the lines of the 2-spinor and 3-spinor ones. We define generalized connecting quantities A μv (j) which transform like (j, 0) ⊗ (j -1, 0) in spinor space and like second rank tensors under transformations in space-time. The general properties of the A uv are investigated together with algebraic relations involving the Lorentz group generators, J μv . The connexion with 3j symbols is discussed. From a purely formal point of view we introduce a geometrical representation of a (2j +1)-spinor as a point in a 2j dimensional projective space. Then, for example, the charge con­jugate of a (2j + l)-spinor is just the polar of the corresponding point with respect to a certain rational, normal curve in the projective space. It is suggested that this representation will prove useful.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tariq Nawaz ◽  
M. Asif Memon ◽  
Kavikumar Jacob

One of the many techniques to obtain a new convex function from the given functions is to calculate the product of these functions by imposing certain conditions on the functions. In general, the product of two or finite number of convex function needs not to be convex and, therefore, leads us to the study of product of these functions. In this paper, we reframe the idea of product of functions in the setting of generalized convex function to establish Hermite–Hadamard-type inequalities for these functions. We have analyzed different cases of double and triple integrals to derive some new results. The presented results can be viewed as the refinement and improvement of previously known results.


2004 ◽  
Vol 56 (4) ◽  
pp. 716-741 ◽  
Author(s):  
Elena Guardo ◽  
Adam Van Tuyl

AbstractWe study the Hilbert functions of fat points in ℙ1× ℙ1. IfZ⊆ ℙ1× ℙ1is an arbitrary fat point scheme, then it can be shown that for everyiandjthe values of the Hilbert functionHZ(l,j) andHZ(i,l) eventually become constant forl≫ 0. We show how to determine these eventual values by using only the multiplicities of the points, and the relative positions of the points in ℙ1× ℙ1. This enables us to compute all but a finite number values ofHZwithout using the coordinates of points. We also characterize the ACM fat point schemes using our description of the eventual behaviour. In fact, in the case thatZ⊆ ℙ1× ℙ1is ACM, then the entire Hilbert function and its minimal free resolution depend solely on knowing the eventual values of the Hilbert function.


2018 ◽  
Vol 2020 (17) ◽  
pp. 5450-5475 ◽  
Author(s):  
Jinwon Choi ◽  
Michel van Garrel ◽  
Sheldon Katz ◽  
Nobuyoshi Takahashi

Abstract We study the BPS invariants for local del Pezzo surfaces, which can be obtained as the signed Euler characteristic of the moduli spaces of stable one-dimensional sheaves on the surface $S$. We calculate the Poincaré polynomials of the moduli spaces for the curve classes $\beta $ having arithmetic genus at most 2. We formulate a conjecture that these Poincaré polynomials are divisible by the Poincaré polynomials of $((-K_S).\beta -1)$-dimensional projective space. This conjecture motivates the upcoming work on log BPS numbers [8].


Sign in / Sign up

Export Citation Format

Share Document