scholarly journals There are genus one curves of every index over every infinite, finitely generated field

2019 ◽  
Vol 2019 (749) ◽  
pp. 65-86
Author(s):  
Pete L. Clark ◽  
Allan Lacy

Abstract We show that a nontrivial abelian variety over a Hilbertian field in which the weak Mordell–Weil theorem holds admits infinitely many torsors with period any given n>1 that is not divisible by the characteristic. The corresponding statement with “period” replaced by “index” is plausible but open, and it seems much more challenging. We show that for every infinite, finitely generated field K, there is an elliptic curve E_{/K} which admits infinitely many torsors with index any given n>1 .

2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


Author(s):  
Viliam Ďuriš ◽  
Timotej Šumný

In the modern theory of elliptic curves, one of the important problems is the determination of the number of rational points on an elliptic curve. The Mordel–Weil theorem [T. Shioda, On the Mordell–Weil lattices, Comment. Math. University St. Paul. 39(2) (1990) 211–240] points out that the elliptic curve defined above the rational points is generated by a finite group. Despite the knowledge that an elliptic curve has a final number of rational points, it is still difficult to determine their number and the way how to determine them. The greatest progress was achieved by Birch and Swinnerton–Dyer conjecture, which was included in the Millennium Prize Problems [A. Wiles, The Birch and Swinnerton–Dyer conjecture, The Millennium Prize Problems (American Mathematical Society, 2006), pp. 31–44]. This conjecture uses methods of the analytical theory of numbers, while the current knowledge corresponds to the assumptions of the conjecture but has not been proven to date. In this paper, we focus on using a tangent line and the osculating circle for characterizing the rational points of the elliptical curve, which is the greatest benefit of the contribution. We use a different view of elliptic curves by using Minkowki’s theory of number geometry [H. F. Blichfeldt, A new principle in the geometry of numbers, with some applications, Trans. Amer. Math. Soc. 15(3) (1914) 227–235; V. S. Miller, Use of elliptic curves in cryptography, in Proc. Advances in Cryptology — CRYPTO ’85, Lecture Notes in Computer Science, Vol. 218 (Springer, Berlin, Heidelberg, 1985), pp. 417–426; E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Vol. 670, 1st edn. (Cambridge University Press, 2007)].


2018 ◽  
Vol 154 (5) ◽  
pp. 934-959 ◽  
Author(s):  
Bruce W. Jordan ◽  
Allan G. Keeton ◽  
Bjorn Poonen ◽  
Eric M. Rains ◽  
Nicholas Shepherd-Barron ◽  
...  

Let $E$ be an elliptic curve over a field $k$. Let $R:=\operatorname{End}E$. There is a functor $\mathscr{H}\!\mathit{om}_{R}(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\operatorname{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories. We also prove a partial generalization in which $E$ is replaced by a suitable higher-dimensional abelian variety over $\mathbb{F}_{p}$.


2010 ◽  
Vol 06 (03) ◽  
pp. 471-499 ◽  
Author(s):  
EVELINA VIADA

This work is the third part of a series of papers. In the first two, we considered curves and varieties in a power of an elliptic curve. Here, we deal with subvarieties of an abelian variety in general. Let V be a proper irreducible subvariety of dimension d in an abelian variety A, both defined over the algebraic numbers. We say that V is weak-transverse if V is not contained in any proper algebraic subgroup of A, and transverse if it is not contained in any translate of such a subgroup. Assume a conjectural lower bound for the normalized height of V. Then, for V transverse, we prove that the algebraic points of bounded height of V which lie in the union of all algebraic subgroups of A of codimension at least d + 1 translated by the points close to a subgroup Γ of finite rank, are non-Zariski-dense in V. If Γ has rank zero, it is sufficient to assume that V is weak-transverse. The notion of closeness is defined using a height function.


2017 ◽  
Vol 234 ◽  
pp. 46-86
Author(s):  
MOSHE JARDEN ◽  
SEBASTIAN PETERSEN

Let$K$be a finitely generated extension of$\mathbb{Q}$, and let$A$be a nonzero abelian variety over$K$. Let$\tilde{K}$be the algebraic closure of$K$, and let$\text{Gal}(K)=\text{Gal}(\tilde{K}/K)$be the absolute Galois group of$K$equipped with its Haar measure. For each$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, let$\tilde{K}(\unicode[STIX]{x1D70E})$be the fixed field of$\unicode[STIX]{x1D70E}$in$\tilde{K}$. We prove that for almost all$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, there exist infinitely many prime numbers$l$such that$A$has a nonzero$\tilde{K}(\unicode[STIX]{x1D70E})$-rational point of order$l$. This completes the proof of a conjecture of Geyer–Jarden from 1978 in characteristic 0.


2012 ◽  
Vol 15 ◽  
pp. 308-316 ◽  
Author(s):  
Christophe Arene ◽  
David Kohel ◽  
Christophe Ritzenthaler

AbstractWe prove that under any projective embedding of an abelian variety A of dimension g, a complete set of addition laws has cardinality at least g+1, generalizing a result of Bosma and Lenstra for the Weierstrass model of an elliptic curve in ℙ2. In contrast, we prove, moreover, that if k is any field with infinite absolute Galois group, then there exists for every abelian variety A/k a projective embedding and an addition law defined for every pair of k-rational points. For an abelian variety of dimension 1 or 2, we show that this embedding can be the classical Weierstrass model or the embedding in ℙ15, respectively, up to a finite number of counterexamples for ∣k∣≤5 .


2004 ◽  
Vol 56 (1) ◽  
pp. 194-208
Author(s):  
A. Saikia

AbstractSuppose K is an imaginary quadratic field and E is an elliptic curve over a number field F with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as in K. Let Epn denote the pn-division points on E. Assume that F(Epn) is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the -Selmer group of E over F(Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra of . It also gives a simple formula for the rank of the Pontrjagin dual as a Λ-module.


2013 ◽  
Vol 149 (12) ◽  
pp. 2011-2035 ◽  
Author(s):  
David Grant ◽  
Su-Ion Ih

AbstractLet $k$ be a number field with algebraic closure $ \overline{k} $, and let $S$ be a finite set of primes of $k$ containing all the infinite ones. Let $E/ k$ be an elliptic curve, ${\mit{\Gamma} }_{0} $ be a finitely generated subgroup of $E( \overline{k} )$, and $\mit{\Gamma} \subseteq E( \overline{k} )$ the division group attached to ${\mit{\Gamma} }_{0} $. Fix an effective divisor $D$ of $E$ with support containing either: (i) at least two points whose difference is not torsion; or (ii) at least one point not in $\mit{\Gamma} $. We prove that the set of ‘integral division points on $E( \overline{k} )$’, i.e., the set of points of $\mit{\Gamma} $ which are $S$-integral on $E$ relative to $D, $ is finite. We also prove the ${ \mathbb{G} }_{\mathrm{m} } $-analogue of this theorem, thereby establishing the 1-dimensional case of a general conjecture we pose on integral division points on semi-abelian varieties.


2012 ◽  
Vol 08 (01) ◽  
pp. 53-69 ◽  
Author(s):  
AMIR AKBARY ◽  
DRAGOS GHIOCA

We formulate a geometric analog of the Titchmarsh divisor problem in the context of abelian varieties. For any abelian variety A defined over ℚ, we study the asymptotic distribution of the primes of ℤ which split completely in the division fields of A. For all abelian varieties which contain an elliptic curve we establish an asymptotic formula for such primes under the assumption of Generalized Riemann Hypothesis. We explain how to derive an unconditional asymptotic formula in the case that the abelian variety is a complex multiplication elliptic curve.


Sign in / Sign up

Export Citation Format

Share Document