scholarly journals Galois representations attached to moments of Kloosterman sums and conjectures of Evans

2014 ◽  
Vol 151 (1) ◽  
pp. 68-120 ◽  
Author(s):  
Zhiwei Yun ◽  
Christelle Vincent

AbstractKloosterman sums for a finite field $\mathbb{F}_{p}$ arise as Frobenius trace functions of certain local systems defined over $\mathbb{G}_{m,\mathbb{F}_{p}}$. The moments of Kloosterman sums calculate the Frobenius traces on the cohomology of tensor powers (or symmetric powers, exterior powers, etc.) of these local systems. We show that when $p$ ranges over all primes, the moments of the corresponding Kloosterman sums for $\mathbb{F}_{p}$ arise as Frobenius traces on a continuous $\ell$-adic representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ that comes from geometry. We also give bounds on the ramification of these Galois representations. All of this is done in the generality of Kloosterman sheaves attached to reductive groups introduced by Heinloth, Ngô and Yun [Ann. of Math. (2) 177 (2013), 241–310]. As an application, we give proofs of conjectures of Evans [Proc. Amer. Math. Soc. 138 (2010), 517–531; Israel J. Math. 175 (2010), 349–362] expressing the seventh and eighth symmetric power moments of the classical Kloosterman sum in terms of Fourier coefficients of explicit modular forms. The proof for the eighth symmetric power moment conjecture relies on the computation done in Appendix B by C. Vincent.

Author(s):  
DESSISLAVA H. KOCHLOUKOVA

If Q is a finitely generated abelian group, k a field, V a finitely generated kQ-module Bieri and Groves have proved that [otimes ]mV is a finitely generated as a kQ-module with diagonal Q-action if and only if ∧iV is finitely generated as a kQ-module for all 1[les ]i[les ]m. We generalize this result by showing that if the mth exterior power of V or the mth symmetric power of V is finitely generated as a kQ-module so is the mth tensor power of V. Further we show the equivalence between the finite generation of symmetric and tensor powers in the case when the ground ring is a PID of characteristic 0.


2015 ◽  
Vol 151 (10) ◽  
pp. 1965-1980 ◽  
Author(s):  
Jean-Louis Colliot-Thélène ◽  
Jan Van Geel

For $n=2$ the statement in the title is a theorem of B. Poonen (2009). He uses a one-parameter family of varieties together with a theorem of Coray, Sansuc and one of the authors (1980), on the Brauer–Manin obstruction for rational points on these varieties. For $n=p$, $p$ any prime number, A. Várilly-Alvarado and B. Viray (2012) considered analogous families of varieties. Replacing this family by its $(2p+1)$th symmetric power, we prove the statement in the title using a theorem on the Brauer–Manin obstruction for rational points on such symmetric powers. The latter theorem is based on work of one of the authors with Swinnerton-Dyer (1994) and with Skorobogatov and Swinnerton-Dyer (1998), work generalising results of Salberger (1988).


Author(s):  
James Newton ◽  
Jack A. Thorne

AbstractLet $f$ f be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting $\operatorname{Sym}^{n} f$ Sym n f for every $n \geq 1$ n ≥ 1 .


Author(s):  
Johan Bosman

This chapter discusses several aspects of the practical side of computing with modular forms and Galois representations. It starts by discussing computations with modular forms, and from there work towards the computation of polynomials that give the Galois representations associated with modular forms. Throughout, the chapter denotes the space of cusp forms of weight k, group Γ‎₁(N), and character ε‎ by Sₖ(N, ε‎).


Author(s):  
Jean-Marc Couveignes ◽  
Bas Edixhoven

This chapter provides the first, informal description of the algorithms. It explains how the computation of the Galois representations V attached to modular forms over finite fields should proceed. The essential step is to approximate the minimal polynomial P of (3.1) with sufficient precision so that P itself can be obtained.


Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

This chapter develops the basic theory of symmetric powers of smooth varieties. The constructions in this chapter are based on an analogy with the corresponding symmetric power constructions in topology. If 𝐾 is a set (or even a topological space) then the symmetric power 𝑆𝑚𝐾 is defined to be the orbit space 𝐾𝑚/Σ‎𝑚, where Σ‎𝑚 is the symmetric group. If 𝐾 is pointed, there is an inclusion 𝑆𝑚𝐾 ⊂ 𝑆𝑚+1𝐾 and 𝑆∞𝐾 = ∪𝑆𝑚𝐾 is the free abelian monoid on 𝐾 − {*}. When 𝐾 is a connected topological space, the Dold–Thom theorem says that ̃𝐻*(𝐾, ℤ) agrees with the homotopy groups π‎ *(𝑆∞𝐾). In particular, the spaces 𝑆∞(𝑆 𝑛) have only one homotopy group (𝑛 ≥ 1) and hence are the Eilenberg–Mac Lane spaces 𝐾(ℤ, 𝑛) which classify integral homology.


Sign in / Sign up

Export Citation Format

Share Document