scholarly journals Tangent cones to generalised theta divisors and generic injectivity of the theta map

2017 ◽  
Vol 153 (12) ◽  
pp. 2643-2657 ◽  
Author(s):  
George H. Hitching ◽  
Michael Hoff

Let $C$ be a Petri general curve of genus $g$ and $E$ a general stable vector bundle of rank $r$ and slope $g-1$ over $C$ with $h^{0}(C,E)=r+1$. For $g\geqslant (2r+2)(2r+1)$, we show how the bundle $E$ can be recovered from the tangent cone to the generalised theta divisor $\unicode[STIX]{x1D6E9}_{E}$ at ${\mathcal{O}}_{C}$. We use this to give a constructive proof and a sharpening of Brivio and Verra’s theorem that the theta map $\mathit{SU}_{C}(r){\dashrightarrow}|r\unicode[STIX]{x1D6E9}|$ is generically injective for large values of $g$.

2019 ◽  
Vol 26 (04) ◽  
pp. 629-642
Author(s):  
Anargyros Katsabekis

Let C(n) be a complete intersection monomial curve in the 4-dimensional affine space. In this paper we study the complete intersection property of the monomial curve C(n + wv), where w > 0 is an integer and v ∈ ℕ4. In addition, we investigate the Cohen–Macaulayness of the tangent cone of C(n + wv).


10.37236/5793 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Dumitru I. Stamate

Let $H$ be an $n$-generated numerical semigroup such that its tangent cone $\operatorname{gr}_\mathfrak{m} K[H]$ is defined by quadratic relations. We show that if $n<5$ then $\operatorname{gr}_\mathfrak{m} K[H]$ is Cohen-Macaulay, and for $n=5$ we explicitly describe the semigroups $H$ such that $\operatorname{gr}_\mathfrak{m} K[H]$ is not Cohen-Macaulay. As an application we show that if the field $K$ is algebraically closed and of characteristic different from two, and $n\leq 5$ then $\operatorname{gr}_\mathfrak{m} K[H]$ is Koszul if and only if (possibly after a change of coordinates) its defining ideal has a quadratic Gröbner basis.


2018 ◽  
Vol 98 (2) ◽  
pp. 230-238
Author(s):  
MESUT ŞAHİN

We study an operation, that we call lifting, creating nonisomorphic monomial curves from a single monomial curve. Our main result says that all but finitely many liftings of a monomial curve have Cohen–Macaulay tangent cones even if the tangent cone of the original curve is not Cohen–Macaulay. This implies that the Betti sequence of the tangent cone is eventually constant under this operation. Moreover, all liftings have Cohen–Macaulay tangent cones when the original monomial curve has a Cohen–Macaulay tangent cone. In this case, all the Betti sequences are just the Betti sequence of the original curve.


2019 ◽  
Vol 99 (2) ◽  
pp. 195-202
Author(s):  
LINGGUANG LI

Let $X$ be a smooth projective curve of genus $g\geq 2$ over an algebraically closed field $k$ of characteristic $p>0$. We show that for any integers $r$ and $d$ with $0<r<p$, there exists a maximally Frobenius destabilised stable vector bundle of rank $r$ and degree $d$ on $X$ if and only if $r\mid d$.


2018 ◽  
Vol 5 (1) ◽  
pp. 195-201
Author(s):  
Indranil Biswas ◽  
Mahan Mj ◽  
Misha Verbitsky

AbstractLet M be a compact complex manifold of dimension at least three and Π : M → X a positive principal elliptic fibration, where X is a compact Kähler orbifold. Fix a preferred Hermitian metric on M. In [14], the third author proved that every stable vector bundle on M is of the form L⊕ Π ⃰ B0, where B0 is a stable vector bundle on X, and L is a holomorphic line bundle on M. Here we prove that every stable Higgs bundle on M is of the form (L ⊕ Π ⃰B0, Π ⃰ ɸX), where (B0, ɸX) is a stable Higgs bundle on X and L is a holomorphic line bundle on M.


1977 ◽  
Vol 66 ◽  
pp. 77-88
Author(s):  
Toshio Hosoh

In the previous paper [1], we showed that the set of simple vector bundles of rank 2 on a rational surface with fixed Chern classes is bounded and we gave a sufficient condition for an H-stable vector bundle of rank 2 on a rational surface to be ample. In this paper, we shall extend the results of [1] to the case of higher rank.


1989 ◽  
Vol 32 (1) ◽  
pp. 81-98 ◽  
Author(s):  
Nikolaos S. Papageorgiou

In “Viability Theory”, we select trajectories which are viable in the sense that they always satisfy a given constraint. Since the fundamental work of Nagumo [26], we know that in order to guarantee existence of viable trajectories, we need to satisfy certain tangential conditions. In the case of differential inclusions and using the modern terminology and notation of tangent cones, this condition takes the form F(t, x) ∩ TK#φ, where F(.,.) is the orientor field involved in the differential inclusion, K is the viability (constraint) set and TK(x) is the tangent cone to K at x. Results on the existence of viable solutions for differential inclusions can be found in Aubin–Cellina [2] and Papageorgiou [30,32].


Mathematics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 84
Author(s):  
Wenying Wu ◽  
Dingtao Peng

In this paper, optimality conditions for the group sparse constrained optimization (GSCO) problems are studied. Firstly, the equivalent characterizations of Bouligand tangent cone, Clarke tangent cone and their corresponding normal cones of the group sparse set are derived. Secondly, by using tangent cones and normal cones, four types of stationary points for GSCO problems are given: TB-stationary point, NB-stationary point, TC-stationary point and NC-stationary point, which are used to characterize first-order optimality conditions for GSCO problems. Furthermore, both the relationship among the four types of stationary points and the relationship between stationary points and local minimizers are discussed. Finally, second-order necessary and sufficient optimality conditions for GSCO problems are provided.


1975 ◽  
Vol 59 ◽  
pp. 135-148 ◽  
Author(s):  
Toshio Hosoh

On a complete non-singular curve defined over the complex number field C, a stable vector bundle is ample if and only if its degree is positive [3]. On a surface, the notion of the H-stability was introduced by F. Takemoto [8] (see § 1). We have a simple numerical sufficient condition for an H-stable vector bundle on a surface S defined over C to be ample; let E be an H-stable vector bundle of rank 2 on S with Δ(E) = c1(E)2 - 4c2(E) ≧ 0, then E is ample if and only if c1(E) > 0 and c2(E) > 0, provided S is an abelian surface, a ruled surface or a hyper-elliptic surface [9]. But the assumption above concerning Δ(E) evidently seems too strong. In this paper, we restrict ourselves to the projective plane P2 and a rational ruled surface Σn defined over an algebraically closed field k of arbitrary characteristic. We shall prove a finer assertion than that of [9] for an H-stable vector bundle of rank 2 to be ample (Theorem 1 and Theorem 3). Examples show that our result is best possible though it is not a necessary condition (see Remark (1) §2).


Sign in / Sign up

Export Citation Format

Share Document