scholarly journals Higher-rank Bohr sets and multiplicative diophantine approximation

2019 ◽  
Vol 155 (11) ◽  
pp. 2214-2233 ◽  
Author(s):  
Sam Chow ◽  
Niclas Technau

Gallagher’s theorem is a sharpening and extension of the Littlewood conjecture that holds for almost all tuples of real numbers. We provide a fibre refinement, solving a problem posed by Beresnevich, Haynes and Velani in 2015. Hitherto, this was only known on the plane, as previous approaches relied heavily on the theory of continued fractions. Using reduced successive minima in lieu of continued fractions, we develop the structural theory of Bohr sets of arbitrary rank, in the context of diophantine approximation. In addition, we generalise the theory and result to the inhomogeneous setting. To deal with this inhomogeneity, we employ diophantine transference inequalities in lieu of the three distance theorem.

2012 ◽  
Vol 148 (3) ◽  
pp. 718-750 ◽  
Author(s):  
Yann Bugeaud

AbstractWe establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w*2.


2019 ◽  
Vol 17 (1) ◽  
pp. 544-555
Author(s):  
Wenxu Ge ◽  
Weiping Li ◽  
Tianze Wang

Abstract Suppose that λ1, λ2, λ3, λ4, λ5 are nonzero real numbers, not all of the same sign, λ1/λ2 is irrational, λ2/λ4 and λ3/λ5 are rational. Let η real, and ε > 0. Then there are infinitely many solutions in primes pj to the inequality $\begin{array}{} \displaystyle |\lambda_1p_1+\lambda_2p_2^2+\lambda_3p_3^3+\lambda_4p_4^4+\lambda_5p_5^5+\eta| \lt (\max{p_j^j})^{-1/32+\varepsilon} \end{array}$. This improves an earlier result under extra conditions of λj.


2014 ◽  
Vol 11 (01) ◽  
pp. 193-209 ◽  
Author(s):  
Yann Bugeaud ◽  
Tomislav Pejković

Let p be a prime number. Let w2 and [Formula: see text] denote the exponents of approximation defined by Mahler and Koksma, respectively, in their classifications of p-adic numbers. It is well-known that every p-adic number ξ satisfies [Formula: see text], with [Formula: see text] for almost all ξ. By means of Schneider's continued fractions, we give explicit examples of p-adic numbers ξ for which the function [Formula: see text] takes any prescribed value in the interval (0, 1].


2018 ◽  
Vol 14 (07) ◽  
pp. 1903-1918
Author(s):  
Wenxu Ge ◽  
Huake Liu

Let [Formula: see text] be an integer with [Formula: see text], and [Formula: see text] be any real number. Suppose that [Formula: see text] are nonzero real numbers, not all the same sign and [Formula: see text] is irrational. It is proved that the inequality [Formula: see text] has infinitely many solutions in primes [Formula: see text], where [Formula: see text], and [Formula: see text] for [Formula: see text]. This generalizes earlier results. As application, we get that the integer parts of [Formula: see text] are prime infinitely often for primes [Formula: see text].


2020 ◽  
Vol 71 (2) ◽  
pp. 573-597
Author(s):  
Niclas Technau ◽  
Agamemnon Zafeiropoulos

Abstract Let $(n_k)_{k=1}^{\infty }$ be a lacunary sequence of integers. We show that if $\mu$ is a probability measure on $[0,1)$ such that $|\widehat{\mu }(t)|\leq c|t|^{-\eta }$, then for $\mu$-almost all $x$, the discrepancy $D_N(n_kx)$ satisfies $$\begin{equation*}\frac{1}{4} \leq \limsup_{N\to\infty}\frac{N D_N(n_kx)}{\sqrt{N\log\log N}} \leq C\end{equation*}$$for some constant $C>0$. This proves a conjecture of Haynes, Jensen and Kristensen and allows an improvement on their previous result relevant to an inhomogeneous version of the Littlewood conjecture.


Author(s):  
Jingcheng Tong

AbstractLet ξ be an irrational number with simple continued fraction expansion be its ith convergent. Let Mi = [ai+1,…, a1]+ [0; ai+2, ai+3,…]. In this paper we prove that Mn−1 < r and Mn R imply which generalizes a previous result of the author.


2014 ◽  
Vol 10 (08) ◽  
pp. 2151-2186 ◽  
Author(s):  
Krishna Dasaratha ◽  
Laure Flapan ◽  
Thomas Garrity ◽  
Chansoo Lee ◽  
Cornelia Mihaila ◽  
...  

Most well-known multidimensional continued fractions, including the Mönkemeyer map and the triangle map, are generated by repeatedly subdividing triangles. This paper constructs a family of multidimensional continued fractions by permuting the vertices of these triangles before and after each subdivision. We obtain an even larger class of multidimensional continued fractions by composing the maps in the family. These include the algorithms of Brun, Parry-Daniels and Güting. We give criteria for when multidimensional continued fractions associate sequences to unique points, which allows us to determine when periodicity of the corresponding multidimensional continued fraction corresponds to pairs of real numbers being cubic irrationals in the same number field.


Sign in / Sign up

Export Citation Format

Share Document