Diophantine approximation and a lower bound for Hausdorff dimension

Mathematika ◽  
1990 ◽  
Vol 37 (1) ◽  
pp. 59-73 ◽  
Author(s):  
M. M. Dodson ◽  
B. P. Rynne ◽  
J. A. G. Vickers
2017 ◽  
Vol 39 (3) ◽  
pp. 638-657 ◽  
Author(s):  
TUSHAR DAS ◽  
LIOR FISHMAN ◽  
DAVID SIMMONS ◽  
MARIUSZ URBAŃSKI

We highlight a connection between Diophantine approximation and the lower Assouad dimension by using information about the latter to show that the Hausdorff dimension of the set of badly approximable points that lie in certain non-conformal fractals, known as self-affine sponges, is bounded below by the dynamical dimension of these fractals. For self-affine sponges with equal Hausdorff and dynamical dimensions, the set of badly approximable points has full Hausdorff dimension in the sponge. Our results, which are the first to advance beyond the conformal setting, encompass both the case of Sierpiński sponges/carpets (also known as Bedford–McMullen sponges/carpets) and the case of Barański carpets. We use the fact that the lower Assouad dimension of a hyperplane diffuse set constitutes a lower bound for the Hausdorff dimension of the set of badly approximable points in that set.


Author(s):  
ALAN HAYNES ◽  
HENNA KOIVUSALO ◽  
JAMES WALTON ◽  
LORENZO SADUN

AbstractWe establish a connection between gaps problems in Diophantine approximation and the frequency spectrum of patches in cut and project sets with special windows. Our theorems provide bounds for the number of distinct frequencies of patches of size r, which depend on the precise cut and project sets being used, and which are almost always less than a power of log r. Furthermore, for a substantial collection of cut and project sets we show that the number of frequencies of patches of size r remains bounded as r tends to infinity. The latter result applies to a collection of cut and project sets of full Hausdorff dimension.


2014 ◽  
Vol 58 (1) ◽  
pp. 1-26
Author(s):  
Faustin Adiceam

AbstractThe Hausdorff dimension of the set of simultaneously τ-well-approximable points lying on a curve defined by a polynomial P(X) + α, where P(X) ∈ ℤ[X] and α ∈ ℝ, is studied when τ is larger than the degree of P(X). This provides the first results related to the computation of the Hausdorff dimension of the set of well-approximable points lying on a curve that is not defined by a polynomial with integer coefficients. The proofs of the results also include the study of problems in Diophantine approximation in the case where the numerators and the denominators of the rational approximations are related by some congruential constraint.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Moez Ben Abid ◽  
Mourad Ben Slimane ◽  
Ines Ben Omrane ◽  
Borhen Halouani

The t-multifractal formalism is a formula introduced by Jaffard and Mélot in order to deduce the t-spectrum of a function f from the knowledge of the (p,t)-oscillation exponent of f. The t-spectrum is the Hausdorff dimension of the set of points where f has a given value of pointwise Lt regularity. The (p,t)-oscillation exponent is measured by determining to which oscillation spaces Op,ts (defined in terms of wavelet coefficients) f belongs. In this paper, we first prove embeddings between oscillation and Besov-Sobolev spaces. We deduce a general lower bound for the (p,t)-oscillation exponent. We then show that this lower bound is actually equality generically, in the sense of Baire’s categories, in a given Sobolev or Besov space. We finally investigate the Baire generic validity of the t-multifractal formalism.


2013 ◽  
Vol 209 ◽  
pp. 1-22 ◽  
Author(s):  
Shouhei Honda

AbstractWe call a Gromov–Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. Furthermore, we prove that any Ricci limit space has integral Hausdorff dimension, provided that its Hausdorff dimension is not greater than 2. We also classify 1-dimensional Ricci limit spaces.


2018 ◽  
Vol 167 (02) ◽  
pp. 249-284 ◽  
Author(s):  
YANN BUGEAUD ◽  
YITWAH CHEUNG ◽  
NICOLAS CHEVALLIER

AbstractIn this paper we prove that the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponentμin (1/2, 1) is equal to 2(1 −μ) forμ⩾$\sqrt2/2$, whereas forμ<$\sqrt2/2$it is greater than 2(1 −μ) and at most equal to (3 − 2μ)(1 − μ)/(1 −μ+μ2). We also establish that this dimension tends to 4/3 (which is the dimension of the set of singular two-dimensional vectors) whenμtends to 1/2. These results improve upon previous estimates of R. Baker, joint work of the first author with M. Laurent, and unpublished work of M. Laurent. Moreover, we prove a lower bound for the packing dimension, which appears to be strictly greater than the Hausdorff dimension for μ ⩾ 0.565. . . .


1999 ◽  
Vol 10 (3) ◽  
pp. 337-347 ◽  
Author(s):  
H. Dickinson ◽  
M.M. Dodson ◽  
J. Yuan

Sign in / Sign up

Export Citation Format

Share Document