scholarly journals CHLOROTETRACYCLINE FLUORESCENCE ASSOCIATED WITH PLASMA MEMBRANES OF COCKROACH SALIVARY GLAND CELLS

1983 ◽  
Vol 68 (1) ◽  
pp. 105-121
Author(s):  
D. C. Gray ◽  
C. R. House
2021 ◽  
Vol 22 (9) ◽  
pp. 4780
Author(s):  
Jisoo Lee ◽  
Yoon-Jung Kim ◽  
La-Mee Choi ◽  
Keimin Lee ◽  
Hee-Kyung Park ◽  
...  

Activity-dependent fluid secretion is the most important physiological function of salivary glands and is regulated via muscarinic receptor signaling. Lipid rafts are important for G-protein coupled receptor (GPCR) signaling and ion channels in plasma membranes. However, it is not well understood whether lipid raft disruption affects all membrane events or only specific functions in muscarinic receptor-mediated water secretion in salivary gland cells. We investigated the effects of lipid raft disruption on the major membrane events of muscarinic transcellular water movement in human salivary gland (HSG) cells. We found that incubation with methyl-β-cyclodextrin (MβCD), which depletes lipid rafts, inhibited muscarinic receptor-mediated Ca2+ signaling in HSG cells and isolated mouse submandibular acinar cells. However, MβCD did not inhibit a Ca2+ increase induced by thapsigargin, which activates store-operated Ca2+ entry (SOCE). Interestingly, MβCD increased the activity of the large-conductance Ca2+-activated K+ channel (BK channel). Finally, we found that MβCD did not directly affect the translocation of aquaporin-5 (AQP5) into the plasma membrane. Our results suggest that lipid rafts maintain muscarinic Ca2+ signaling at the receptor level without directly affecting the activation of SOCE induced by intracellular Ca2+ pool depletion or the translocation of AQP5 into the plasma membrane.


1998 ◽  
Vol 273 (17) ◽  
pp. 10806
Author(s):  
Pavel Belan ◽  
Julie Gardner ◽  
Oleg Gerasimenko ◽  
Chris Lloyd Mills ◽  
Ole H. Petersen ◽  
...  

2000 ◽  
Vol 275 (13) ◽  
pp. 9890-9891
Author(s):  
Xibao Liu ◽  
Weiching Wang ◽  
Brij B. Singh ◽  
Timothy Lockwich ◽  
Julie Jadlowiec ◽  
...  

1998 ◽  
Vol 77 (10) ◽  
pp. 1807-1816 ◽  
Author(s):  
H. Yamaki ◽  
K. Morita ◽  
S. Kitayama ◽  
Y. Imai ◽  
K. Itadani ◽  
...  

2013 ◽  
Vol 88 (1) ◽  
pp. 559-573 ◽  
Author(s):  
R. Burger-Calderon ◽  
V. Madden ◽  
R. A. Hallett ◽  
A. D. Gingerich ◽  
V. Nickeleit ◽  
...  

1987 ◽  
Vol 7 (12) ◽  
pp. 4308-4316
Author(s):  
E Egyházi ◽  
E Durban

Purified anti-topoisomerase I immunoglobulin G (IgG) was microinjected into nuclei of Chironomus tentans salivary gland cells, and the effect on DNA transcription was investigated. Synthesis of nucleolar preribosomal 38S RNA by RNA polymerase I and of chromosomal Balbiani ring RNA by RNA polymerase II was inhibited by about 80%. The inhibitory action of anti-topoisomerase I IgG could be reversed by the addition of exogenous topoisomerase I. Anti-topoisomerase I IgG had less effect on RNA polymerase II-promoted activity of other less efficiently transcribing heterogeneous nuclear RNA genes. The pattern of inhibition of growing nascent Balbiani ring chains indicated that the transcriptional process was interrupted at the level of chain elongation. The highly decondensed state of active Balbiani ring chromatin, however, remained unaffected after injection of topoisomerase I antibodies. These data are consistent with the interpretation that topoisomerase I is an essential component in the transcriptional process but not in the maintenance of the decondensed state of active chromatin.


Sign in / Sign up

Export Citation Format

Share Document