scholarly journals Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice

2007 ◽  
Vol 578 (3) ◽  
pp. 715-733 ◽  
Author(s):  
Andrew D. Grant ◽  
Graeme S. Cottrell ◽  
Silvia Amadesi ◽  
Marcello Trevisani ◽  
Paola Nicoletti ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Azhar Sherkheli ◽  
Guenter Gisselmann ◽  
Hanns Hatt

Transient receptor potential vanilloid subtype 3 (TRPV3) is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C), and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems likeXenopus laevesoocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8) to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3) are shut off.


2008 ◽  
Vol 294 (5) ◽  
pp. G1288-G1298 ◽  
Author(s):  
Walter E. B. Sipe ◽  
Stuart M. Brierley ◽  
Christopher M. Martin ◽  
Benjamin D. Phillis ◽  
Francisco Bautista Cruz ◽  
...  

Protease-activated receptor (PAR2) is expressed by nociceptive neurons and activated during inflammation by proteases from mast cells, the intestinal lumen, and the circulation. Agonists of PAR2 cause hyperexcitability of intestinal sensory neurons and hyperalgesia to distensive stimuli by unknown mechanisms. We evaluated the role of the transient receptor potential vanilloid 4 (TRPV4) in PAR2-induced mechanical hyperalgesia of the mouse colon. Colonic sensory neurons, identified by retrograde tracing, expressed immunoreactive TRPV4, PAR2, and calcitonin gene-related peptide and are thus implicated in nociception. To assess nociception, visceromotor responses (VMR) to colorectal distension (CRD) were measured by electromyography of abdominal muscles. In TRPV4+/+ mice, intraluminal PAR2 activating peptide (PAR2-AP) exacerbated VMR to graded CRD from 6–24 h, indicative of mechanical hyperalgesia. PAR2-induced hyperalgesia was not observed in TRPV4−/− mice. PAR2-AP evoked discharge of action potentials from colonic afferent neurons in TRPV4+/+ mice, but not from TRPV4−/− mice. The TRPV4 agonists 5′,6′-epoxyeicosatrienoic acid and 4α-phorbol 12,13-didecanoate stimulated discharge of action potentials in colonic afferent fibers and enhanced current responses recorded from retrogradely labeled colonic dorsal root ganglia neurons, confirming expression of functional TRPV4. PAR2-AP enhanced these responses, indicating sensitization of TRPV4. Thus TRPV4 is expressed by primary spinal afferent neurons innervating the colon. Activation of PAR2 increases currents in these neurons, evokes discharge of action potentials from colonic afferent fibers, and induces mechanical hyperalgesia. These responses require the presence of functional TRPV4. Therefore, TRPV4 is required for PAR2-induced mechanical hyperalgesia and excitation of colonic afferent neurons.


2020 ◽  
Vol 21 (10) ◽  
pp. 3421 ◽  
Author(s):  
Miguel Benítez-Angeles ◽  
Sara Luz Morales-Lázaro ◽  
Emmanuel Juárez-González ◽  
Tamara Rosenbaum

The Transient Receptor Potential Vanilloid 1 (TRPV1) channel is a polymodal protein with functions widely linked to the generation of pain. Several agonists of exogenous and endogenous nature have been described for this ion channel. Nonetheless, detailed mechanisms and description of binding sites have been resolved only for a few endogenous agonists. This review focuses on summarizing discoveries made in this particular field of study and highlighting the fact that studying the molecular details of activation of the channel by different agonists can shed light on biophysical traits that had not been previously demonstrated.


Sign in / Sign up

Export Citation Format

Share Document