scholarly journals Simulações numéricas da formação de ilha de calor na região metropolitana do Rio de Janeiro

2005 ◽  
Vol 28 (2) ◽  
pp. 116-138
Author(s):  
Nilton Oliveira Moraes ◽  
Edilson Marton ◽  
Luiz Cláudio Gomes Pimentel

The differents characteristics of ground covering in the Rio de Janeiro Metropolitan Region, where regions with high percentage of asphalt and concrete are surrounded for rural areas, determine the appearance of a temperature horizontal gradient knowledge as urban heat island phenomenon. Besides, diverse scientific works have demonstrated the influence of the mesoescale atmospheric circulation and synoptic scale in the urban heat island formation and dissipation. The main subjetive of study consists in analyze from simulated results, with the mesoescale model MM5, and observacionals data, the influence of synoptic systems and locals characteristics of the RMRJ in the formation and dissipation of urban heat island.

Urban Climate ◽  
2020 ◽  
Vol 34 ◽  
pp. 100681 ◽  
Author(s):  
Michal Zak ◽  
Ion-Andrei Nita ◽  
Alexandru Dumitrescu ◽  
Sorin Cheval

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Jeffrey B. Basara ◽  
Heather G. Basara ◽  
Bradley G. Illston ◽  
Kenneth C. Crawford

During late July and early August 2008, an intense heat wave occurred in Oklahoma City. To quantify the impact of the urban heat island (UHI) in Oklahoma City on observed and apparent temperature conditions during the heat wave event, this study used observations from 46 locations in and around Oklahoma City. The methodology utilized composite values of atmospheric conditions for three primary categories defined by population and general land use: rural, suburban, and urban. The results of the analyses demonstrated that a consistent UHI existed during the study period whereby the composite temperature values within the urban core were approximately C warmer during the day than the rural areas and over C warmer at night. Further, when the warmer temperatures were combined with ambient humidity conditions, the composite values consistently revealed even warmer heat-related variables within the urban environment as compared with the rural zone.


2021 ◽  
Author(s):  
Heorhi Burchanka ◽  
Yahor Prakopchyk ◽  
Tsimafei Schlender ◽  
Aleh Baravik ◽  
Siarhei Barodka

<p>This study is devoted to analysis of urban development effects on surface thermal characteristics for the case of Belarusian cities of Minsk and Mahiloŭ. Both cities being situated on the same latitude (53.90 N) and not far from each other (~180 km distance), while also sharing a number of similar features typical for cities in Belarus (and in some other former Eastern Bloc countries as well), Minsk and Mahiloŭ nevertheless differ significantly in terms of their population, size and structure. It is therefore of interest to perform urban climate studies for these two cities in parallel.</p><p>First, we use geoinformation systems (QGIS), centralized city planning databases and Open Street Maps (OSM) vector data to implement description of Minsk and Mahiloŭ urban territories in terms of functional zones, taking into account such features as buildings density and urban area category (industrial, residential, business, recreational and other types).</p><p>Furthermore, we perform analysis of surface temperature fields for both cities from satellite data (Landsat-8) and ground-based observations, the latter including both regular meteorological stations (in urban as well as surrounding rural areas) and a volunteer network of weather and air quality sensors distributed in both cities as part of the AirMQ project [1]. We analyze observations for several months in the 2019-2021 period (depending on data availability), paying special attention to days with specific weather conditions (e.g. blocking anticyclones).</p><p>Analysis demonstrates clear evidence of significant urban heat island effects in thermal regimes of both cities, with specific areas of increased temperature related to urban zoning, industrial and green areas, buildings heights and density. However, the selected method of surface urban heat island (SUHI) detection turns out to be somewhat limited for the purposes of studying the effects of blocking anticyclones on urban heat island phenomena development, thereby calling for application of atmospheric numerical modelling techniques.</p><p>[1] AirMQ project, URL: https://airmq.by/</p>


2020 ◽  
pp. 115898
Author(s):  
Arvind Tiwari ◽  
Prashant Kumar ◽  
Gopinath Kalaiarasan ◽  
Thor-Bjørn Ottosen

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Sahar Sodoudi ◽  
Parisa Shahmohamadi ◽  
Ken Vollack ◽  
Ulrich Cubasch ◽  
A. I. Che-Ani

Cities demonstrate higher nocturnal temperatures than surrounding rural areas, which is called “urban heat island” (UHI) effect. Climate change projections also indicate increase in the frequency and intensity of heat waves, which will intensify the UHI effect. As megacity Tehran is affected by severe heatwaves in summer, this study investigates its UHI characteristics and suggests some feasible mitigation strategies in order to reduce the air temperature and save energy. Temperature monitoring in Tehran shows clear evidence of the occurrence of the UHI effect, with a peak in July, where the urban area is circa 6 K warmer than the surrounding areas. The mobile measurements show a park cool island of 6-7 K in 2 central parks, which is also confirmed by satellite images. The effectiveness of three UHI mitigation strategies high albedo material (HAM), greenery on the surface and on the roofs (VEG), and a combination of them (HYBRID) has been studied using simulation with the microscale model ENVI-met. All three strategies show higher cooling effect in the daytime. The average nocturnal cooling effect of VEG and HYBRID (0.92, 1.10 K) is much higher than HAM (0.16 K), although high-density trees show a negative effect on nocturnal cooling.


2017 ◽  
Vol 11 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Paul Macarof ◽  
Florian Statescu

Abstract This study compares the normalized difference built-up index (NDBI) and normalized difference vegetation index (NDVI) as indicators of surface urban heat island effects in Landsat-8 OLI imagery by investigating the relationships between the land surface temperature (LST), NDBI and NDVI. The urban heat island (UHI) represents the phenomenon of higher atmospheric and surface temperatures occurring in urban area or metropolitan area than in the surrounding rural areas due to urbanization. With the development of remote sensing technology, it has become an important approach to urban heat island research. Landsat data were used to estimate the LST, NDBI and NDVI from four seasons for Iasi municipality area. This paper indicates than there is a strong linear relationship between LST and NDBI, whereas the relationship between LST and NDVI varies by season. This paper suggests, NDBI is an accurate indicator of surface UHI effects and can be used as a complementary metric to the traditionally applied NDVI.


2019 ◽  
Vol 46 (4) ◽  
pp. 2204-2212 ◽  
Author(s):  
Rui Yao ◽  
Lunche Wang ◽  
Xin Huang ◽  
Wei Gong ◽  
Xiangao Xia

Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Margaret Hurwitz ◽  
Christian Braneon ◽  
Dalia Kirschbaum ◽  
Felipe Mandarino ◽  
Raed Mansour

Rio de Janeiro, Brazil, and Chicago, Ill., are using NASA Earth observations to map, monitor, and forecast water and air quality, urban heat island effects, landslide risks, and more.


2021 ◽  
Author(s):  
William J. Keat ◽  
Elizabeth J. Kendon ◽  
Sylvia I. Bohnenstengel

AbstractIncreasing summer temperatures in a warming climate will increase the exposure of the UK population to heat-stress and associated heat-related mortality. Urban inhabitants are particularly at risk, as urban areas are often significantly warmer than rural areas as a result of the urban heat island phenomenon. The latest UK Climate Projections include an ensemble of convection-permitting model (CPM) simulations which provide credible climate information at the city-scale, the first of their kind for national climate scenarios. Using a newly developed urban signal extraction technique, we quantify the urban influence on present-day (1981–2000) and future (2061–2080) temperature extremes in the CPM compared to the coarser resolution regional climate model (RCM) simulations over UK cities. We find that the urban influence in these models is markedly different, with the magnitude of night-time urban heat islands overestimated in the RCM, significantly for the warmest nights (up to $$4~^{\circ }$$ 4 ∘ C), while the CPM agrees much better with observations. This improvement is driven by the improved land-surface representation and more sophisticated urban scheme MORUSES employed by the CPM, which distinguishes street canyons and roofs. In future, there is a strong amplification of the urban influence in the RCM, whilst there is little change in the CPM. We find that future changes in soil moisture play an important role in the magnitude of the urban influence, highlighting the importance of the accurate representation of land-surface and hydrological processes for urban heat island studies. The results indicate that the CPM provides more reliable urban temperature projections, due at least in part to the improved urban scheme.


Sign in / Sign up

Export Citation Format

Share Document