An Image-Based Approach to Variational Path Synthesis of Linkages

2021 ◽  
Author(s):  
Shrinath Deshpande ◽  
Anurag Purwar
Keyword(s):  
2021 ◽  
Vol 11 (10) ◽  
pp. 4385
Author(s):  
Kun Qian ◽  
Zhichao Hou ◽  
Jie Liang ◽  
Ruixue Liu ◽  
Dengke Sun

The interior sound quality (SQ) of pure electric vehicles (PEVs) has become an important consideration for users purchasing vehicles. At present, it is insufficient to take the sound pressure level as the interior acoustics design index of PEVs. Transfer path analysis (TPA) and transfer path synthesis (TPS) that take the SQ of interior noise as the improvement target remains in the preliminary exploration stage. In this paper, objective psychoacoustic parameters of SQ were taken as evaluation indexes of interior PEV noise. A virtual interior SQ synthesis model was designed on the basis of TPA and TPS, which combines experimentation and simulation. The SQ synthesis model demonstrates each noise component contribution in a PEV by new SQ separation technology. First, the interior noise transfer path and noise source of the PEV were determined in a synthesis analysis method of the interior PEV noise. Second, on the basis of the composition mechanism of interior noise and the basic principle of TPA, the excitation signal and transfer function of each interior noise path in the PEV were tested. On the basis of TPS, the interior SQ synthesis model of PEV was then established. Finally, the accuracy of the prediction model was verified in simulation and experimental comparison studies on the psychoacoustic objective parameters of SQ. The SQ objective parameter value of each transfer path was quantified by using contribution analysis. The results are expected to improve the comfort of the interior acoustic environment and enhance the competitiveness of vehicle products. They also provide an effective reference and new ideas for the development of interior SQ in PEVs.


2018 ◽  
Author(s):  
Jakub Krzysztof Grabski ◽  
Tomasz Walczak ◽  
Jacek Buśkiewicz ◽  
Martyna Michałowska

1974 ◽  
Vol 96 (1) ◽  
pp. 19-24
Author(s):  
P. J. Starr

Dynamic Path Synthesis refers to a class of linkage synthesis problems in which constraint paths between specified positions are determined in such a way as to optimize some measure of the resulting dynamic behavior. These problems can be transformed into nonlinear optimal control problems which are generally non-autonomous. The physical nature of the system allows general comments to be made regarding uniqueness, controllability, and singular control. The ideas are developed in the context of a two-link device yielding a fourth order non-linear control problem, for which a numerical example is presented.


Sign in / Sign up

Export Citation Format

Share Document