built in self test
Recently Published Documents


TOTAL DOCUMENTS

820
(FIVE YEARS 72)

H-INDEX

37
(FIVE YEARS 2)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-37
Author(s):  
Arjun Chaudhuri ◽  
Sanmitra Banerjee ◽  
Jinwoo Kim ◽  
Heechun Park ◽  
Bon Woong Ku ◽  
...  

Monolithic 3D (M3D) integration provides massive vertical integration through the use of nanoscale inter-layer vias (ILVs). However, high integration density and aggressive scaling of the inter-layer dielectric make ILVs especially prone to defects. We present a low-cost built-in self-test (BIST) method that requires only two test patterns to detect opens, stuck-at faults, and bridging faults (shorts) in ILVs. We also propose an extended BIST architecture for fault detection, called Dual-BIST, to guarantee zero ILV fault masking due to single BIST faults and negligible ILV fault masking due to multiple BIST faults. We analyze the impact of coupling between adjacent ILVs arranged in a 1D array in block-level partitioned designs. Based on this analysis, we present a novel test architecture called Shared-BIST with the added functionality of localizing single and multiple faults, including coupling-induced faults. We introduce a systematic clustering-based method for designing and integrating a delay bank with the Shared-BIST architecture for testing small-delay defects in ILVs with minimal yield loss. Simulation results for four two-tier M3D benchmark designs highlight the effectiveness of the proposed BIST framework.


2022 ◽  
Author(s):  
Benjamin Kommey ◽  
Ernest Addo ◽  
Jepthah Yankey ◽  
Andrew Agbemenu ◽  
Eric Tchao ◽  
...  

Abstract This paper presents the design of an on-chip charge pump phase-locked loop (CP-PLL) with a fully digital defect oriented built-in self-test (BIST) for very-high frequency (VHF) applications. The frequency synthesizer has a 40 to 100 MHz tuning range and uses a ring voltage-controlled oscillator for frequency synthesis. The PLL exhibits a phase noise of -132 dBc/Hz at 1 MHz and consumes 1.8 mW on a 3 V supply. The BIST implementation uses fewer external input or output, is capable of efficient fault diagnosis, and is compact, posing a low area overhead. The integrated circuit design was realized in the AMI 0.6µ complementary metal oxide-semiconductor process.


2022 ◽  
Vol 165 ◽  
pp. 108644
Author(s):  
Zequn Lin ◽  
Lingzhi Wang ◽  
Yuanfeng Cai ◽  
Fanyu Wang ◽  
Yichun Wu

2021 ◽  
Vol 11 (20) ◽  
pp. 9476
Author(s):  
Tomasz Garbolino

Digital cores that are currently incorporated into advanced Systems on Chip (SoC) frequently include Logic Built-In Self-Test (LBIST) modules with the Self-Test Using MISR/Parallel Shift Register Sequence Generator (STUMPS) architecture. Such a solution always comprises a Pseudo-Random Pattern Generator (PRPG), usually designed as a Linear Feedback Shift Register (LFSR) with a phase shifter attached to the register and arranged as a network of XOR gates. This study discloses an original and innovative structure of such a PRPG unit referred to as the DT-LFSR-TPG module that needs no phase shifter. The module is designed as a set of identical linear registers of the DT-LFSR type with the same primitive polynomial. Each register has a form of a ring made up exclusively of D and T flip-flops. This study is focused on the investigation of those parameters of DT-LFSR registers that are essential to use these registers as components of PRPG modules. The investigated parameters include phase shifts and the correlation between sequences of bits appearing at outputs of T flip-flops, implementation cost, and the maximum frequency of the register operation. It is demonstrated that PRPG modules of the DT‑LFSR‑TPG type enable much higher phase shifts and substantially higher operation frequencies as compared to competitive solutions. Such modules can also drive significantly more scan paths than other PRPGs described in reference studies and based on phase shifters. However, the cost of the foregoing advantages of DT-LFSR-TPG modules is the larger hardware overhead associated with the implementation of the solution proposed.


2021 ◽  
Author(s):  
Donghyun Han ◽  
Youngkwang Lee ◽  
Sooryeong Lee ◽  
Sungho Kang

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1115
Author(s):  
Rui Feng ◽  
Jiong Wang ◽  
Wei Qiao ◽  
Fu Wang ◽  
Ming Zhou ◽  
...  

In high-reliability applications, the health condition of the MEMS gyroscope needs to be known in real time to ensure that the system does not fail due to the wrong output signal. Because the MEMS gyroscope self-test based on the principle of electrostatic force cannot be performed during the working state. We propose that by monitoring the quadrature error signal of the MEMS gyroscope in real time, an online self-test of the MEMS gyroscope can be realized. The correlation between the gyroscope’s quadrature error amplitude signal and the gyroscope scale factor and bias was theoretically analyzed. Based on the sixteen-sided cobweb-like MEMS gyroscope, the real-time built-in self-test (BIST) method of the MEMS gyroscope based on the quadrature error signal was verified. By artificially setting the control signal of the gyroscope to zero, we imitated several scenarios where the gyroscope malfunctioned. Moreover, a mechanical impact table was used to impact the gyroscope. After a 6000 g shock, the gyroscope scale factor, bias, and quadrature error amplitude changed by −1.02%, −5.76%, and −3.74%, respectively, compared to before the impact. The gyroscope failed after a 10,000 g impact, and the quadrature error amplitude changed −99.82% compared to before the impact. The experimental results show that, when the amplitude of the quadrature error signal seriously deviates from the original value, it can be determined that the gyroscope output signal is invalid.


2021 ◽  
Author(s):  
T. S. Nguan Kong ◽  
N. Ezaila Alias ◽  
Afiq Hamzah ◽  
Izam Kamisian ◽  
M. L. Peng Tan ◽  
...  
Keyword(s):  

Author(s):  
B V S Sai Praneeth

We propose a methodology to design a Finite State Machine(FSM)-based Programmable Memory Built-In Self Test (PMBIST) which includes a planned procedure for Memory BIST which has a controller to select a test algorithm from a fixed set of algorithms that are built in the memory BIST. In general, it is not possible to test all the different memory modules present in System-on-Chip (SoC) with a single Test algorithm. Subsequently it is desirable to have a programmable Memory BIST controller which can execute multiple test algorithms. The proposed Memory BIST controller is designed as a FSM (Finite State Machine) written in Verilog HDL and this scheme greatly simplifies the testing process and it achieves a good flexibility with smaller circuit size compared with Individual Testing designs. We have used March test algorithms like MATS+, March X, March C- to build the project.


Sign in / Sign up

Export Citation Format

Share Document