Research on Flow and Heat Transfer Characteristics of Multiple Impinging Jets on a Moving Conveyor Belt

2021 ◽  
Author(s):  
Yu Sun ◽  
Jun Ni ◽  
Rui Liu
Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


Author(s):  
Rui Liu ◽  
Yu Sun ◽  
Jun Ni

Abstract Turbulent impinging jets at three different jet nozzle forms were numerically analyzed using the SIMPLE algorithm and k-epsilon turbulent model to investigate the flow field and heat transfer characteristics. The food placed upon a moving conveyor belt cooled by series of impinging jets under a specific condition. Three semi-confined domains with different jet nozzles were established, thereby with slot, rectangular, and funnel-shaped nozzles, respectively. Based on computational fluid dynamic (CFD) calculations, distributions of the temperature and wind velocity at four critical cross-sections of domains were compared. The results reveal that the freezing rate of foods mainly relates to temperature and wind velocity. For three semi-confined domains, the impinging jet with slot nozzles produces higher exit wind velocity, lower center temperature, and a better mass flow uniformity than others, which could better improve the heat transfer performance, and could increase the freezing rate of foods.


Author(s):  
Tarek Abdel-Salam

In this study, flow and heat transfer characteristics of two-dimensional impinging jets are investigated numerically. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume CFD code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results show that the Reynolds number has significant effect on the heat transfer rate and has no effect on the location of the maximum Nusselt number.


2010 ◽  
Vol 2010.59 (0) ◽  
pp. 159-160
Author(s):  
Toshihiko SHAKOUCHI ◽  
Masaaki TSUDA ◽  
Mizuki KITO ◽  
Koichi TSUJIMOTO ◽  
Toshitake ANDO

2020 ◽  
Vol 2020 (0) ◽  
pp. S05118
Author(s):  
Haruka Taniguchi ◽  
Koichi TSUJIMOTO ◽  
Toshihiko SHAKOUCHI ◽  
Toshitake ANDO ◽  
Mamoru TAKAHASHI

Sign in / Sign up

Export Citation Format

Share Document