Stress Analysis and Design for Cyclic Loading

2000 ◽  
Vol 122 (4) ◽  
pp. 427-430
Author(s):  
P. Carter

A finite element implementation of rapid cycle analysis is described and demonstrated. It forms part of a comprehensive framework for static structural analysis which consists of: linear elastic analysis, limit load or nonlinear elastic analysis, and rapid cycle analysis. This approach allows for complex material and loading behavior, but is computationally more efficient and easier to perform than full inelastic analysis. It indicates more complex behavior than can be inferred from linear elastic analysis. The objective of this paper is to calculate shakedown, reverse plasticity, ratcheting, and the increase in strain rate as a result of cyclic mechanical and thermal loading. Results are presented in the form of interaction diagrams, similar to the O’Donnell-Porowski plot in the ASME BPV Code, which are effective design tools. [S0094-9930(00)01604-8]

Author(s):  
M. C. Messner ◽  
R. I. Jetter ◽  
T.-L. Sham

Section III, Division 5 of the ASME Boiler and Pressure Vessel Code provides two broad paths for the design of high temperature, safety-critical nuclear components: design by elastic analysis and design by inelastic analysis. The design by elastic analysis approach, as the name suggests, uses a linear elastic stress analysis of the component and applies design rules designed to bound response of the actual structure, which will undergo both creep and plasticity. Currently, the Code allows the use of the elastic approach for all operating temperatures up to the maximum use temperatures in the Code. The bounds used in the elastic approach assume an uncoupled material response combining rate dependent creep with rate independent plasticity. However, at elevated temperatures creep and plasticity are coupled, rate dependent mechanisms and so the elastic analysis rules may become non-conservative. We present several examples of potential non-conservatism in the elastic analysis rules at high operating temperatures. Then we describe a systematic method for determining a temperature cutoff describing the transition from non-unified, rate independent plasticity material response to a rate dependent, unified plastic response. Logically, this transition temperature sets the upper bound for the allowable, conservative use of the design by elastic analysis approach and so we propose these temperatures, determined for all the Section III, Division 5 Class A materials, as Code limits for the applicability of the elastic approach.


1997 ◽  
Vol 1 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Wibisono Hartono

This paper presents a nonlinear elastic analysis of cantilever beam subjected to two follower forces. Those two proportional forces are always perpendicular to the beam axis. The solution of differential equations based on the large displacement theory, known as elastica is obtained with the help of principle of elastic similarity. For comparison purpose, numerical results using the finite element method are also presented and the results show good agreement.


1999 ◽  
Vol 123 (3) ◽  
pp. 218-224 ◽  
Author(s):  
Cemal Basaran ◽  
Ying Zhao

Multi-layered stacks are commonly used in microelectronic packaging. Traditionally, these systems are designed using linear-elastic analysis either with analytical solutions or finite element method. Linear-elastic analysis for layered structures yields very conservative results due to stress singularity at the free edge. In this paper, it is shown that a damage mechanics based nonlinear analysis not just leads to a more realistic analysis but also provides more accurate stress distribution. In this paper these two approaches are compared. Moreover, mesh sensitivity of the finite element analysis in stack problems is studied. It is shown that the closed form and elastic finite element analyses can only be used for preliminary studies and elastic finite element method is highly mesh sensitive for this problem. In elastic analysis the stress singularity at the free edge makes mesh selection very difficult. Even when asymptotic analysis is used at the free edge, the results are very conservative compared to an inelastic analysis. Rate sensitive inelastic analysis does not suffer from the stress singularity and mesh sensitivity problems encountered in elastic analysis.


1984 ◽  
Vol 106 (4) ◽  
pp. 376-383 ◽  
Author(s):  
S. G. Wu ◽  
G. C. Lee ◽  
N. T. Tseng

Sign in / Sign up

Export Citation Format

Share Document