scholarly journals Quadratic Optimality of the Zero-Phase Repetitive Control

2000 ◽  
Vol 123 (3) ◽  
pp. 554-555 ◽  
Author(s):  
Hakan Ko¨rog˘lu ◽  
O¨mer Morgu¨l

We consider the quadratically optimal repetitive control problem in discrete-time and show that the existing zero-phase repetitive controller is quadratically optimal for stable plants.

Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20 ◽  
Author(s):  
Yong-Hong Lan ◽  
Jun-Jun Xia ◽  
Yue-Xiang Shi

In this paper, a robust guaranteed-cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, a repetitive controller, combined with preview compensator, is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed-cost preview repetitive control problem is transformed into a guaranteed-cost control problem for the augmented dynamic system. For a given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by using a parameter-dependent Lyapunov function method and linear matrix inequality (LMI) techniques. Incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included, to show the effectiveness of the proposed method.


Author(s):  
Yong-Hong Lan ◽  
Xia Jun-Jun

A robust guaranteed cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, the repetitive controller combined with preview compensator is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed cost preview repetitive control problem is transformed into the guaranteed cost control problem for the augmented dynamic system. For given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by combining parameter-dependent Lyapunov function method with linear matrix inequality (LMI) techniques. By incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included to show the effectiveness of the proposed method.


Author(s):  
Ug˘ur Arıdog˘an ◽  
Yingfeng Shan ◽  
Kam K. Leang

This paper studies repetitive control (RC) with linear phase lead compensation to precisely track periodic trajectories in piezo-based scanning probe microscopes (SPMs). Quite often, the lateral scanning motion in SPMs during imaging or fabrication is periodic in time. Because of hysteresis and dynamic effects in the piezoactuator, the tracking error repeats from one scanning period to the next. Commercial SPMs typically employ PID feedback controllers to minimize the tracking error; however, the error repeats from one operating cycle to the next. Furthermore, the residual error can be excessively large, especially at high scan rates. A discrete-time repetitive controller was designed, analyzed, and implemented on an experimental SPM. The design of the RC incorporates two phase lead compensators to provide stability and to minimize the steady-state tracking error. Associated with the lead compensators are two parameters that can be adjusted to control the performance of the repetitive controller. Experimental tracking results are presented that compare the performance of PID, standard RC, and the modified RC with phase lead compensation. The results show that the modified RC reduces the steady-state tracking error to less than 2% at 25 Hz scan rate, an over 80% improvement compared to PID control.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xinghua Liu ◽  
Guoqi Ma ◽  
Prabhakar R. Pagilla ◽  
Shuzhi Sam Ge

This paper investigates the problem of asynchronous repetitive control for a class of discrete-time Markovian switching systems. The control goal is to track a given periodic reference without steady-state error. To achieve this goal, an asynchronous repetitive controller that renders the overall closed-loop switched system mean square stable is proposed. To reflect realistic scenarios, the proposed approach does not assume that the system modes are available synchronously to the controller but instead designs a detector that provides estimated values of the system modes to the controller. Based on a detected-mode-dependent estimator, the plant and asynchronous repetitive controller are formulated as a closed-loop stochastic system. By utilizing tools from stochastic Lyapunov–Krasovskii stability theory, we develop sufficient conditions in terms of linear matrix inequalities (LMIs) such that the closed-loop system is mean square stable and also simultaneously establish a synthesis procedure for obtaining the gain matrices. We provide numerical simulations on an electrical circuit switched system to illustrate the approach.


1994 ◽  
Vol 39 (9) ◽  
pp. 1936-1939 ◽  
Author(s):  
A.A. Stoorvogel ◽  
A. Saberi ◽  
B.M. Chen

1982 ◽  
Vol 104 (2) ◽  
pp. 151-157 ◽  
Author(s):  
M. J. Grimble ◽  
J. Fotakis

The deterministic discrete-time optimal control problem for a finite optimization interval is considered. A solution is obtained in the z-domain by embedding the problem within a equivalent infinite time problem. The optimal controller is time-invariant and may be easily implemented. The controller is related to the solution of the usual infinite time optimal control problem due to Wiener. This new controller should be of value in self-tuning control laws where a finite interval controller is particularly important.


Sign in / Sign up

Export Citation Format

Share Document