Vibration Analysis of Rotors Utilizing Implicit Directional Information of Complex Variable Descriptions

2002 ◽  
Vol 124 (3) ◽  
pp. 340-349 ◽  
Author(s):  
C. Kessler ◽  
J. Kim

A complex variable description of planar motion incorporates directivity as inherent information which is therefore very convenient in vibration analysis of rotors. This paper proposes to use the directional information explicitly when the equation of motion of a rotor is formulated in complex variables. It is shown that the free vibration solution to the equation of motion formulated as such can be defined as the directional natural mode because it describes not only the shape and frequency but also the direction of the free vibration response. The directional frequency response functions (dFRFs) that have been used recently are obtained as the solution to the forced vibration solution to the equation of motion. Symmetric and anti-symmetric motions of a geometrically symmetric rigid rotor are used as examples to explain these concepts and their practical significances. The proposed approach allows clear understanding and definitions of some unique characteristics of rotor vibrations, such as the forward and backward modes, and forward and backward critical speeds, which have been often used in confusing or incorrect ways.

Author(s):  
J-S Wu ◽  
H-M Chou ◽  
D-W Chen

The dynamic characteristic of a uniform rectangular plate with four boundary conditions and carrying three kinds of multiple concentrated element (rigidly attached point masses, linear springs and elastically mounted point masses) was investigated. Firstly, the closed-form solutions for the natural frequencies and the corresponding normal mode shapes of a rectangular ‘bare’ (or ‘unconstrained’) plate (without any attachments) with the specified boundary conditions were determined analytically. Next, by using these natural frequencies and normal mode shapes incorporated with the expansion theory, the equation of motion of the ‘constrained’ plate (carrying the three kinds of multiple concentrated element) were derived. Finally, numerical methods were used to solve this equation of motion to give the natural frequencies and mode shapes of the ‘constrained’ plate. To confirm the reliability of previous free vibration analysis results, a finite element analysis was also conducted. It was found that the results obtained from the above-mentioned two approaches were in good agreement. Compared with the conventional finite element method (FEM), the approach employed in this paper has the advantages of saving computing time and achieving better accuracy, as can be seen from the existing literature.


2011 ◽  
Vol 471-472 ◽  
pp. 1177-1183
Author(s):  
Tasneem Pervez ◽  
F.K.S. Al-Jahwari ◽  
Abdennour Seibi

Free vibration analysis of arbitrarily laminated plates of quad, penta and hexagonal shapes, which have combinations of clamped, simply supported and free edge conditions is performed. The finite element formulation is based on first and higher order shear deformation theories to study the free vibration response of thick laminated composite plates. A finite element code is developed incorporating shear deformation theories using an 8-noded serendipity element. The effect of plate shape, arbitrary lamination and different edge conditions on natural frequencies and mode shapes are investigated. A systematic study is carried out to determine the influence of material orthotropy and aspect ratio on free vibration response. For various cases, the comparisons of results from present study showed good agreement with those published in the literature.


2013 ◽  
Vol 467 ◽  
pp. 338-342
Author(s):  
Xiao Cong He ◽  
Dong Zhen ◽  
Hui Yan Yang ◽  
Guo Jin Feng ◽  
Bao Ying Xing ◽  
...  

Clinching is a high-speed mechanical fastening technique which is suitable for point joining coated and pre-painted sheet materials. In this study, an experimental measurement technique was provided for the prediction of the free vibration behavior of single-lap cantilevered clinched beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered clinched beams. The frequency response functions of the clinched beams of different clinching number were measured and compared. The main goal of the paper is to provide a basis for further research on vibration based non-destructive damage detection in clinched beams.


Author(s):  
Thamara Petroli ◽  
Marcos Arndt ◽  
Paulo de Oliveira Weinhardt ◽  
ROBERTO Dalledone Machado

Sign in / Sign up

Export Citation Format

Share Document