Free vibration analysis of a rectangular plate carrying multiple various concentrated elements

Author(s):  
J-S Wu ◽  
H-M Chou ◽  
D-W Chen

The dynamic characteristic of a uniform rectangular plate with four boundary conditions and carrying three kinds of multiple concentrated element (rigidly attached point masses, linear springs and elastically mounted point masses) was investigated. Firstly, the closed-form solutions for the natural frequencies and the corresponding normal mode shapes of a rectangular ‘bare’ (or ‘unconstrained’) plate (without any attachments) with the specified boundary conditions were determined analytically. Next, by using these natural frequencies and normal mode shapes incorporated with the expansion theory, the equation of motion of the ‘constrained’ plate (carrying the three kinds of multiple concentrated element) were derived. Finally, numerical methods were used to solve this equation of motion to give the natural frequencies and mode shapes of the ‘constrained’ plate. To confirm the reliability of previous free vibration analysis results, a finite element analysis was also conducted. It was found that the results obtained from the above-mentioned two approaches were in good agreement. Compared with the conventional finite element method (FEM), the approach employed in this paper has the advantages of saving computing time and achieving better accuracy, as can be seen from the existing literature.

Author(s):  
Romuald Rzadkowski ◽  
Artur Maurin

Considered here was the effect of multistage coupling on the dynamics of a rotor consisting of eight mistuned bladed discs on a solid shaft. Each bladed disc had a different number of rotor blades. Free vibrations were examined using finite element representations of rotating single blades, bladed discs, and the entire rotor. In this study the global rotating mode shapes of eight flexible mistuned bladed discs on shaft assemblies were calculated, taking into account rotational effects such as centrifugal stiffening. The thus obtained natural frequencies of the blade, shaft, bladed disc and entire shaft with discs were carefully examined to discover resonance conditions and coupling effects. This study found that mistuned systems cause far more intensive multistage coupling than tuned ones. The greater the mistuning, the more intense the multistage coupling.


Author(s):  
Li-Jeng Huang ◽  
Her-Yung Wang ◽  
Wen-Ling Huang ◽  
Ming-Chao Lin

This paper presents free vibration analysis of pavement bases constructed using sustainable material, a controlled low-strength material (CLSM), using finite element (FE) method. The CLSM concrete is introduced as pavement bases for its special features of easy compaction, high workability and relatively low cost. Rut-resistant stone matrix asphalt is placed on top of CLSM as wearing surface layer. The Young's moduli of CLSM are obtained from laboratory tests for two different binder mixtures, marked as CLSM-B80/30% and CLSM-B130/30%. Two-dimensional planar strain assumption is employed in the FE formulation of steady-state elasto-dynamic analysis of four-layered flexible pavements in which four kinds of different base materials are considered: graded crushed stone, CLSM-B80/30%, CLSM-B130/30% and AC. Comparison study on computed natural frequencies and mode shapes of the flexible pavement using different bases materials will be conducted. Results show that CLSM pavement bases depict higher natural frequencies as compared with graded crushed stone bases and can be suitable sustainable materials employed for pavement design and construction in highway engineering.


Author(s):  
Touraj Farsadi ◽  
Özgün Şener ◽  
Altan Kayran

Composite pretwisted rotating thin walled beams (TWB) can be used as the structural model for composite helicopter and wind turbine blades for the study of aeroelastic response of the blades. In the present study, semi-analytical solution is performed for the free vibration analysis of uniform and asymmetric composite pretwisted rotating TWB. The approximation of the Green-Lagrange strain tensor is adopted to derive the strain field of the system. The Euler–Lagrange governing equations of the dynamic system and the related boundary conditions are derived via Hamilton’s principle. In order to solve the governing set of equations, the Extended Galerkin’s Method (EGM) is employed. For this purpose, the structural variables are separated in space and time and the assumed mode shapes are defined to satisfy the essential boundary conditions. For the purpose of validating the TWB model developed, the commercial finite element analysis tool, MSC Nastran is used to compare the results of modal analysis obtained by the present structural model with the finite element solution. With the results obtained in this paper, it is aimed to ascertain the effect of various coupling in circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness CUS configurations, pretwist, angular velocity and fibre orientation, on the natural frequencies and the mode shapes of the rotating thin-walled composite beams. The results are expected to propose better predictions of the vibrational behavior of thin walled structures in general, and in the design of rotor blades of turbomachinery, rotorcraft and wind turbine systems, in particular.


2019 ◽  
Vol 12 (4) ◽  
pp. 67-72
Author(s):  
Haneen A. Mahmood ◽  
Zaid S. Hammoudi ◽  
Ali Laftah Abbas

A delicate analysis of the natural frequencies and mode shapes of a cable stayed bridge is essential to the solution of its dynamic responses due to seismic, wind and traffic loads. In this paper, a bridge with geometry comparable to the Quincy Bayview Bridge was modelled in order to explore the significance of the three dimensional and free vibration analysis. This paper provides a detail of the bridge and the equivalent cross section of the three-dimensional finite element model implicating cables, the bridge deck and pylons as well as the boundary conditions and free vibration analysis by Ansys15.0. The bridge was analyzed to free vibration to obtaine the natural frequency and mode shape. result of this paper present the natural frequencies and mode shapes of the bridge. The method of modelling cables is also studied. It is found that modelling cables as multi beam elements provides better results than using the traditional (and simpler) method of modeling them as single tensile elements.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


2002 ◽  
Vol 124 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Akhilesh K. Jha ◽  
Daniel J. Inman ◽  
Raymond H. Plaut

Free vibration analysis of a free inflated torus of circular cross-section is presented. The shell theory of Sanders, including the effect of pressure, is used in formulating the governing equations. These partial differential equations are reduced to ordinary differential equations with variable coefficients using complete waves in the form of trigonometric functions in the longitudinal direction. The assumed mode shapes are divided into symmetric and antisymmetric groups, each given by a Fourier series in the meridional coordinate. The solutions (natural frequencies and mode shapes) are obtained using Galerkin’s method and verified with published results. The natural frequencies are also obtained for a circular cylinder with shear diaphragm boundary condition as a special case of the toroidal shell. Finally, the effects of aspect ratio, pressure, and thickness on the natural frequencies of the inflated torus are studied.


2011 ◽  
Vol 18 (5) ◽  
pp. 709-726 ◽  
Author(s):  
Yusuf Yesilce

The structural elements supporting motors or engines are frequently seen in technological applications. The operation of machine may introduce additional dynamic stresses on the beam. It is important, then, to know the natural frequencies of the coupled beam-mass system, in order to obtain a proper design of the structural elements. The literature regarding the free vibration analysis of Bernoulli-Euler and Timoshenko single-span beams carrying a number of spring-mass system and multi-span beams carrying multiple spring-mass systems are plenty, but the free vibration analysis of Reddy-Bickford multi-span beams carrying multiple spring-mass systems has not been investigated by any of the studies in open literature so far. This paper aims at determining the exact solutions for the natural frequencies and mode shapes of Reddy-Bickford beams. The model allows analyzing the influence of the shear effect and spring-mass systems on the dynamic behavior of the beams by using Reddy-Bickford Beam Theory (RBT). The effects of attached spring-mass systems on the free vibration characteristics of the 1–4 span beams are studied. The natural frequencies of Reddy-Bickford single-span and multi-span beams calculated by using the numerical assembly technique and the secant method are compared with the natural frequencies of single-span and multi-span beams calculated by using Timoshenko Beam Theory (TBT); the mode shapes are presented in graphs.


Author(s):  
M. Nikkhah-Bahrami ◽  
Abazar Shamekhi

This study presents the free vibration analysis of circular plate having variable thickness made of functionally-graded material. The boundary conditions of the plate is either simply supported or clamped. Dynamic equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander’s non-linear strain-displacement relation for thin plates. The finite element method is used to determine the natural frequencies. The results obtained show good agreement with known analytical data. The effects of thickness variation and Poisson’s ratio are investigated by calculating the natural frequencies. These effects are found not to be the same for simply supported and clamped plates.


2020 ◽  
Vol 23 (16) ◽  
pp. 3415-3428
Author(s):  
Yusuf Cunedioglu ◽  
Shkelzen Shabani

Free vibration analysis of a single edge cracked multi-layered symmetric sandwich stepped Timoshenko beams, made of functionally graded materials, is studied using finite element method and linear elastic fracture mechanic theory. The cantilever functionally graded beam consists of 50 layers, assumed that the second stage of the beam (step part) is created by machining. Thus, providing the material continuity between the two beam stages. It is assumed that material properties vary continuously, along the thickness direction according to the exponential and power laws. A developed MATLAB code is used to find the natural frequencies of three types of the stepped beam, concluding a good agreement with the known data from the literature, supported also by ANSYS software in data verification. In the study, the effects of the crack location, crack depth, power law gradient index, different material distributions, different stepped length, different cross-sectional geometries on natural frequencies and mode shapes are analysed in detail.


Sign in / Sign up

Export Citation Format

Share Document