Inlet Fogging of Gas Turbine Engines Detailed Climatic Analysis of Gas Turbine Evaporation Cooling Potential in the USA

2002 ◽  
Vol 125 (1) ◽  
pp. 300-309 ◽  
Author(s):  
M. Chaker ◽  
C. B. Meher-Homji ◽  
T. Mee ◽  
A. Nicholson

Inlet fogging of gas turbine engines has attained considerable popularity due to the ease of installation and the relatively low first cost compared to other inlet cooling methods. With increasing demand for power and with shortage envisioned especially during the peak load times during the summers, there is a need to boost gas turbine power. There is a sizable evaporative cooling potential throughout the world when the climatic data is evaluated based on an analysis of coincident wet bulb and dry bulk information. These data are not readily available to plant users. In this paper, a detailed climatic analysis is made of 122 locations in the U.S. to provide the hours of cooling that can be obtained by direct evaporative cooling. These data will allow gas turbine operators to easily make an assessment of the economics of evaporative cooling. The paper also covers an introduction to direct evaporative cooling and the methodology and data analysis used to derive the cooling potential in different regions of the U.S. Simulation runs have been made for gas turbine simple cycles using a reference plant based on a GE Frame 7111EA gas turbine at the 122 locations studied in the U.S. to provide a feel for the sensitivity of operation with inlet fogging.

2006 ◽  
Vol 128 (4) ◽  
pp. 815-825 ◽  
Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji

Inlet fogging of gas turbine engines has attained considerable popularity due to the ease of installation and the relatively low first cost compared to other inlet cooling methods. With increasing demand for power and with shortages envisioned especially during the peak load times during the summers, there is a need to boost gas turbine power. There is a sizable evaporative cooling potential throughout the world when the climatic data is evaluated based on an analysis of coincident wet bulb and dry bulb information. These data are not readily available to plant users. In this paper, a detailed climatic analysis is made of 106 major locations over the world to provide the hours of cooling that can be obtained by direct evaporative cooling. This data will allow gas turbine operators to easily make an assessment of the economics of evaporative fogging. The paper also covers an introduction to direct evaporative cooling and the methodology and data analysis used to derive the cooling potential. Simulation runs have been made for gas turbine simple cycles showing effects of fogging for a GE Frame 7EA and a GE Frame 9FA Gas turbine for 60 and 50 Hz applications.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee ◽  
Alex Nicolson

Inlet fogging of gas turbine engines has attained considerable popularity due to the ease of installation and the relatively low first cost compared to other inlet cooling methods. With increasing demand for power and with shortages envisioned especially during the peak load times during the summers, there is a need to boost gas turbine power. There is a sizable evaporative cooling potential throughout the world when the climatic data is evaluated based on an analysis of coincident wet bulb and dry bulb information. This data is not readily available to plant users. In this paper, a detailed climatic analysis is made of 122 locations in the US to provide the hours of cooling that can be obtained by direct evaporative cooling. This data will allow gas turbine operators to easily make an assessment of the economics of evaporative cooling. The paper also covers an introduction to direct evaporative cooling and the methodology and data analysis used to derive the cooling potential in different regions of the US. Simulation runs have been made for gas turbine simple cycles using a reference plant based on a GE Frame 7111EA gas turbine at the 122 locations studied in the US to provide a feel for the sensitivity of operation with inlet fogging.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji

Inlet fogging of gas turbine engines has attained considerable popularity due to the ease of installation and the relatively low first cost compared to other inlet cooling methods. With increasing demand for power and with shortages envisioned especially during the peak load times during the summers, there is a need to boost gas turbine power. There is a sizable evaporative cooling potential throughout the world when the climatic data is evaluated based on an analysis of coincident wet bulb and dry bulb information. This data is not readily available to plant users. In this paper, a detailed climatic analysis is made of 106 major locations over the world to provide the hours of cooling that can be obtained by direct evaporative cooling. This data will allow gas turbine operators to easily make an assessment of the economics of evaporative fogging. The paper also covers an introduction to direct evaporative cooling and the methodology and data analysis used to derive the cooling potential. Simulation runs have been made for gas turbine simple cycles showing effects of fogging for a GE Frame 7EA and a GE Frame 9FA Gas turbine for 60 and 50 Hz applications.


2015 ◽  
Vol 22 (4) ◽  
pp. 53-58 ◽  
Author(s):  
Zygfryd Domachowski ◽  
Marek Dzida

Abstract The use of inlet air fogging installation to boost the power for gas turbine engines is widely applied in the power generation sector. The application of fogging to mechanical drive is rarely considered in literature [1]. This paper will cover some considerations relating to its application for gas turbines in ship drive. There is an important evaporative cooling potential throughout the world, when the dynamic data is evaluated, based on an analysis of coincident wet and dry bulb information. This data will allow ships’ gas turbine operators to make an assessment of the economics of evaporative fogging. The paper represents an introduction to the methodology and data analysis to derive the direct evaporative cooling potential to be used in marine gas turbine power output loss compensation.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji

There are numerous power generation and mechanical drive gas turbine applications where the power drop caused by high ambient temperatures has a very detrimental effect on the production of power or process throughput. Media evaporative cooling and inlet fogging are common low cost power augmentation techniques applied to reduce these losses. Several misconceptions exist regarding the applicability of evaporative cooling to what are often called “high humidity” regions. There is a sizable evaporative cooling potential in most locations when climatic data is evaluated based on an analysis of coincident wet bulb and dry bulb data. This data is not readily available to plant users and designers. This paper provides a detailed treatment of available climatic data bases and presents actual climatic data from several world wide locations to show that considerable cooling potential actually exists even in high humidity regions. It is hoped that this paper will be of value to plant designers, engineering and operating companies that are considering the use of evaporative cooling for power augmentation.


Author(s):  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy as a landing craft. The TF40B has experienced compressor blade pitting, carbon erosion of the first turbine blade and hot corrosion of the hot section. Many of these problems were reduced by changing the maintenance and operation of the LCAC. A Component Improvement Program (CIP) is currently investigating compressor and hot section coatings better suited for operation in a harsh marine environment. This program will also improve the performance of some engine components such as the bleed manifold and bearing seals.


Author(s):  
Alex C. Greve ◽  
Nathaniel P. Miller ◽  
Jesse D. Shaw

There are various methods used to start marine gas turbine engines on large naval surface combatants. Methods include pneumatic, mechanical, hydraulic, and electric starting systems. This paper gives an overview of basic starting requirements, describes each method used on large surface combatants, and identifies which systems are used on many of the U.S. Navy surface combatants.


2021 ◽  
Author(s):  
Jeffrey S. Patterson ◽  
Kevin Fauvell ◽  
Dennis Russom ◽  
Willie A. Durosseau ◽  
Phyllis Petronello ◽  
...  

Abstract The United States Navy (USN) 501-K Series Radiological Controls (RADCON) Program was launched in late 2011, in response to the extensive damage caused by participation in Operation Tomodachi. The purpose of this operation was to provide humanitarian relief aid to Japan following a 9.0 magnitude earthquake that struck 231 miles northeast of Tokyo, on the afternoon of March 11, 2011. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost in excess of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine powered U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and needed to be decontaminated, cleaned, repaired and returned to the Fleet. During the past eight years, the USN has been very proactive and vigilant with their RADCON efforts, and as of the end of calendar year 2019, have successfully completed the 501-K Series portion of the RADCON program. This paper will update an earlier ASME paper that was written on this subject (GT2015-42057) and will summarize the U.S. Navy’s 501-K Series RADCON effort. Included in this discussion will be a summary of the background of Operation Tomodachi, including a discussion of the affected hulls and related gas turbine equipment. In addition, a discussion of the radiological contamination caused by the disaster will be covered and the resultant effect to and the response by the Marine Gas Turbine Program. Furthermore, the authors will discuss what the USN did to remediate the RADCON situation, what means were employed to select a vendor and to set up a RADCON cleaning facility in the United States. And finally, the authors will discuss the dispensation of the 501-K Series RADCON assets that were not returned to service, which include the 501-K17 gas turbine engine, as well as the 250-KS4 gas turbine engine starter. The paper will conclude with a discussion of the results and lessons learned of the program and discuss how the USN was able to process all of their 501-K34 RADCON affected gas turbine engines and return them back to the Fleet in a timely manner.


Author(s):  
Matthew G. Hoffman ◽  
Richard J. DeCorso ◽  
Dennis M. Russom

The U.S. Navy has experienced problems with liquid fuel nozzles used on the Rolls Royce (formerly Allison) 501K series marine gas turbine engines. The 501K engines used by the U.S. Navy power Ship Service Gas Turbine Generators (SSGTGs) on a number of destroyer and cruiser class ships. Over roughly the last 25 years, 3 different nozzle designs have been employed, the latest and current nozzle being a piloted air blast design. The primary failure modes of these designs were internal fuel passage coking and external carbon deposits. The current piloted air blast design has a hard time replacement requirement of 1500 hours. This life is considered unacceptable. To improve fuel nozzle life, the Navy and Turbine Fuel Technologies (formerly Delavan) teamed in a fast track program to develop a new fuel nozzle with a target life of 5000 hours and 500 starts. As a result, an air assist/air blast nozzle was developed and delivered in approximately 6 months. In addition to the nozzle itself, a system was developed to provide assist air to the fuel nozzles to help atomize the fuel for better ignition. Nozzle sets and air assist systems have been delivered and tested at the NSWC Philadelphia LBES (Land Based Engineering Site). In addition, nozzle sets have been installed aboard operating ships for in-service evaluations. During the Phase one evaluation (July 2000 to June 2001) aboard USS Porter (DDG 78) a set of nozzles accumulated over 3500 hours of trouble free operation, indicating the target of 5000 hours is achievable. As of this writing these nozzles have in excess of 5700 hours. The improvements in nozzle life provided by the new fuel nozzle design will result in cost savings through out the life cycle of the GTGS. In fact, the evaluation nozzles are already improving engine operation and reliability even before the nozzles’ official fleet introduction. This paper describes the fuel nozzle and air assist system development program and results of OEM, LBES and fleet testing.


Author(s):  
Richard DeCorso ◽  
Daniel E. Caguiat ◽  
Jeffrey S. Patterson ◽  
David M. Zipkin

In June 1997, the U.S. Navy purchased the Soviet military cargo ship “Vladimir Vaslyaev” for conversion to the USNS LCPL Roy M. Wheat for use in the Maritime Prepositioning Force. This paper documents the efforts of NSWCCD and dB Associates in supporting the installation, startup, and integration of the ship’s controls with the two Zorya DT-59 main propulsion gas turbine engines (GTE’s). The installation documentation developed included a video record of the port and starboard gas turbine installations, as well as information that aided in the development of the Engineering Operational Procedures (EOP). The integration for the DT-59s focused on providing engine speed sensors, an engine vibration monitoring system and engine reversing protection circuits.


Sign in / Sign up

Export Citation Format

Share Document