Gas Turbine Starting Systems Used Aboard U.S. Navy Large Surface Combatants

Author(s):  
Alex C. Greve ◽  
Nathaniel P. Miller ◽  
Jesse D. Shaw

There are various methods used to start marine gas turbine engines on large naval surface combatants. Methods include pneumatic, mechanical, hydraulic, and electric starting systems. This paper gives an overview of basic starting requirements, describes each method used on large surface combatants, and identifies which systems are used on many of the U.S. Navy surface combatants.

Author(s):  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy as a landing craft. The TF40B has experienced compressor blade pitting, carbon erosion of the first turbine blade and hot corrosion of the hot section. Many of these problems were reduced by changing the maintenance and operation of the LCAC. A Component Improvement Program (CIP) is currently investigating compressor and hot section coatings better suited for operation in a harsh marine environment. This program will also improve the performance of some engine components such as the bleed manifold and bearing seals.


2021 ◽  
Author(s):  
Jeffrey S. Patterson ◽  
Kevin Fauvell ◽  
Dennis Russom ◽  
Willie A. Durosseau ◽  
Phyllis Petronello ◽  
...  

Abstract The United States Navy (USN) 501-K Series Radiological Controls (RADCON) Program was launched in late 2011, in response to the extensive damage caused by participation in Operation Tomodachi. The purpose of this operation was to provide humanitarian relief aid to Japan following a 9.0 magnitude earthquake that struck 231 miles northeast of Tokyo, on the afternoon of March 11, 2011. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost in excess of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine powered U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and needed to be decontaminated, cleaned, repaired and returned to the Fleet. During the past eight years, the USN has been very proactive and vigilant with their RADCON efforts, and as of the end of calendar year 2019, have successfully completed the 501-K Series portion of the RADCON program. This paper will update an earlier ASME paper that was written on this subject (GT2015-42057) and will summarize the U.S. Navy’s 501-K Series RADCON effort. Included in this discussion will be a summary of the background of Operation Tomodachi, including a discussion of the affected hulls and related gas turbine equipment. In addition, a discussion of the radiological contamination caused by the disaster will be covered and the resultant effect to and the response by the Marine Gas Turbine Program. Furthermore, the authors will discuss what the USN did to remediate the RADCON situation, what means were employed to select a vendor and to set up a RADCON cleaning facility in the United States. And finally, the authors will discuss the dispensation of the 501-K Series RADCON assets that were not returned to service, which include the 501-K17 gas turbine engine, as well as the 250-KS4 gas turbine engine starter. The paper will conclude with a discussion of the results and lessons learned of the program and discuss how the USN was able to process all of their 501-K34 RADCON affected gas turbine engines and return them back to the Fleet in a timely manner.


Author(s):  
Matthew G. Hoffman ◽  
Richard J. DeCorso ◽  
Dennis M. Russom

The U.S. Navy has experienced problems with liquid fuel nozzles used on the Rolls Royce (formerly Allison) 501K series marine gas turbine engines. The 501K engines used by the U.S. Navy power Ship Service Gas Turbine Generators (SSGTGs) on a number of destroyer and cruiser class ships. Over roughly the last 25 years, 3 different nozzle designs have been employed, the latest and current nozzle being a piloted air blast design. The primary failure modes of these designs were internal fuel passage coking and external carbon deposits. The current piloted air blast design has a hard time replacement requirement of 1500 hours. This life is considered unacceptable. To improve fuel nozzle life, the Navy and Turbine Fuel Technologies (formerly Delavan) teamed in a fast track program to develop a new fuel nozzle with a target life of 5000 hours and 500 starts. As a result, an air assist/air blast nozzle was developed and delivered in approximately 6 months. In addition to the nozzle itself, a system was developed to provide assist air to the fuel nozzles to help atomize the fuel for better ignition. Nozzle sets and air assist systems have been delivered and tested at the NSWC Philadelphia LBES (Land Based Engineering Site). In addition, nozzle sets have been installed aboard operating ships for in-service evaluations. During the Phase one evaluation (July 2000 to June 2001) aboard USS Porter (DDG 78) a set of nozzles accumulated over 3500 hours of trouble free operation, indicating the target of 5000 hours is achievable. As of this writing these nozzles have in excess of 5700 hours. The improvements in nozzle life provided by the new fuel nozzle design will result in cost savings through out the life cycle of the GTGS. In fact, the evaluation nozzles are already improving engine operation and reliability even before the nozzles’ official fleet introduction. This paper describes the fuel nozzle and air assist system development program and results of OEM, LBES and fleet testing.


Author(s):  
Richard DeCorso ◽  
Daniel E. Caguiat ◽  
Jeffrey S. Patterson ◽  
David M. Zipkin

In June 1997, the U.S. Navy purchased the Soviet military cargo ship “Vladimir Vaslyaev” for conversion to the USNS LCPL Roy M. Wheat for use in the Maritime Prepositioning Force. This paper documents the efforts of NSWCCD and dB Associates in supporting the installation, startup, and integration of the ship’s controls with the two Zorya DT-59 main propulsion gas turbine engines (GTE’s). The installation documentation developed included a video record of the port and starboard gas turbine installations, as well as information that aided in the development of the Engineering Operational Procedures (EOP). The integration for the DT-59s focused on providing engine speed sensors, an engine vibration monitoring system and engine reversing protection circuits.


2002 ◽  
Vol 125 (1) ◽  
pp. 300-309 ◽  
Author(s):  
M. Chaker ◽  
C. B. Meher-Homji ◽  
T. Mee ◽  
A. Nicholson

Inlet fogging of gas turbine engines has attained considerable popularity due to the ease of installation and the relatively low first cost compared to other inlet cooling methods. With increasing demand for power and with shortage envisioned especially during the peak load times during the summers, there is a need to boost gas turbine power. There is a sizable evaporative cooling potential throughout the world when the climatic data is evaluated based on an analysis of coincident wet bulb and dry bulk information. These data are not readily available to plant users. In this paper, a detailed climatic analysis is made of 122 locations in the U.S. to provide the hours of cooling that can be obtained by direct evaporative cooling. These data will allow gas turbine operators to easily make an assessment of the economics of evaporative cooling. The paper also covers an introduction to direct evaporative cooling and the methodology and data analysis used to derive the cooling potential in different regions of the U.S. Simulation runs have been made for gas turbine simple cycles using a reference plant based on a GE Frame 7111EA gas turbine at the 122 locations studied in the U.S. to provide a feel for the sensitivity of operation with inlet fogging.


Author(s):  
Eleanor M. Allison ◽  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy. Operation and test of the first production craft revealed deficiencies and less than desirable reliability, but confirmed the validity of its design and ability to perform the mission. After intensive efforts to resolve these problems, reliability trends began to improve as a result of corrective actions incorporated. Today, the LCAC fleet has accrued over 50,000 engine operating hours. Presented here are the changes which have been incorporated into the configuration of the TF40B engine to eliminate both engine unique and vehicle related discrepancies revealed through fleet experience. These changes have contributed significantly toward the improvement of the engine’s mean time between removal (MTBR) and mean time between failure (MTBF) rates.


Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Brian D. Nicholson

In this paper, the authors present the results of recent developments demonstrating that ultra-high temperature compliant foil bearings are suitable for application in a wide range of high temperature turbomachinery including gas turbine engines, supercritical CO2 power turbines and automotive turbochargers as supported by test data showing operation of foil bearings at temperatures to 870°C (1600°F). This work represents the culmination of efforts begun in 1987, when the U.S. Air Force established and led the government and industry collaborative Integrated High Performance Turbine Engine Technology (IHPTET) program. The stated goal of IHPTET was to deliver twice the propulsion capability of turbine engines in existence at that time. Following IHPTET, the Versatile Affordable Advanced Turbine Engines (VAATE) program further expanded on the original goals by including both versatility and affordability as key elements in advancing turbine engine technology. Achieving the stated performance goals would require significantly more extreme operating conditions including higher temperatures, pressures and speeds, which in turn would require bearings capable of sustaining temperatures in excess of 815°C (1500°F). Similarly, demands for more efficient automotive engines and power plants are subjecting the bearings in turbochargers and turbogenerators to more severe environments. Through the IHPTET and VAATE programs, the U.S. has made considerable research investments to advancing bearing technology, including active magnetic bearings, solid and vapor phase lubricated rolling element bearings, ceramic/hybrid ceramic bearings, powder lubricated bearings and compliant foil gas bearings. Thirty years after the IHPTET component goal of developing a bearing capable of sustained operation at temperatures above 540°C and potentially as high as 815°C (1500°F) recent testing has demonstrated achievement of this goal with an advanced, ultra-high temperature compliant foilgas bearing. Achieving this goal required a combination of high temperature foil material, a unique elastic-tribo-thermal barrier coating (KOROLON 2250) and a self-adapting compliant configuration. The authors describe the experimental hardware designs and design considerations of the two differently sized test rigs used to demonstrate foil bearings operating above 815°C (1500°F). Finally, the authors present and discuss the results of testing at temperatures to 870°C (1600°F).


2006 ◽  
Vol 129 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Tim Edwards

The first provisional jet fuel specifications were published in 1943 in England (RDE/F/KER/210) and 1944 in the U.S. (AN-F-32a). Jet fuel has undergone many changes in subsequent years, with current specifications for JP-5 and JP-8 for the military in the U.S. and Jet A/Jet A-1 for commercial use worldwide. Jet fuel specifications are subject to constant tension between performance requirements and availability/cost considerations. In this paper we will discuss how jet fuels have evolved over the years from the first engines to current gas turbine engines. Jet fuels derived from nonpetroleum sources will also be discussed.


Author(s):  
Tim Edwards

The first jet fuel specifications were published in 1943 in England (RDE/F/KER/210) and 1944 in the U.S. (AN-F-32a). Jet fuel has undergone many changes in subsequent years, with current specifications for JP-5 and JP-8 for the military in the U.S. and Jet A/Jet A-1 for commercial use world-wide. Jet fuel specifications are subject to constant tension between performance requirements and availability/cost considerations. This paper will discuss how jet fuels have evolved over the years from the first engines to current gas turbine engines. Jet fuels derived from non-petroleum sources will also be discussed.


Author(s):  
Jeffrey S. Patterson ◽  
Kevin D. Fauvell ◽  
Jay McMahon ◽  
Javier O. Moralez

On the afternoon of March 11, 2011 at 2:46pm, a 9.0 magnitude earthquake took place 231 miles northeast of Tokyo, Japan, at a depth of 15.2 miles. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi to provide humanitarian relief aid to Japan. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and are now operating under Radiological Controls (RADCON). This paper will describe the events that lead to Operation Tomodachi, as well as the resultant efforts on the U.S. Navy’s Japanese based gas turbine fleet. In addition, this paper will outline the U.S. Navy’s effort to decontaminate, overhaul and return these RADCON assets back into the fleet.


Sign in / Sign up

Export Citation Format

Share Document