Natural Convection Heat Transfer From a Cylinder With High Conductivity Permeable Fins

2003 ◽  
Vol 125 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Bassam A/K Abu-Hijleh

The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity permeable fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average Nusselt number was studied over a wide range of Rayleigh number. Permeable fins provided much higher heat transfer rates compared to the more traditional solid fins for a similar cylinder configuration. The ratio between the permeable to solid Nusselt numbers increased with Rayleigh number, number of fins, and fin height. This ratio was as high as 8.4 at Rayleigh number of 106, non-dimensional fin height of 2.0, and with 11 equally spaced fins. The use of permeable fins is very advantageous when high heat transfer rates are needed such as in today’s high power density electronic components.

2000 ◽  
Vol 122 (4) ◽  
pp. 679-692 ◽  
Author(s):  
B. A/K Abu-Hijleh

The problem of laminar natural convection heat transfer from a horizontal cylinder with multiple, equally spaced, low conductivity baffles on its outer surface was investigated numerically. The effect of several combinations of number of baffles and baffle height on the average Nusselt number was studied over a wide range of Rayleigh numbers. The computed velocity and temperature fields were also used to calculate the local and global entropy generation for different cylinder diameters. The results showed that there was an optimal combination of a number of baffles and baffle height for minimum Nusselt number for a given value of the Rayleigh number. Short baffles slightly increased the Nusselt number at small values of the Rayleigh number. The global entropy generation increased monotonically with increasing Rayleigh number and decreased with increasing cylinder diameter, baffle height, and number of baffles. [S0022-1481(00)01203-2]


Author(s):  
K. Venkatadri ◽  
S. Abdul Gaffar ◽  
Ramachandra Prasad V. ◽  
B. Md. Hidayathulla Khan ◽  
O. Anwar Beg

Natural convection within trapezoidal enclosures finds significant practical applications. The natural convection flows play a prominent role in the transport of energy in energyrelated applications, in case of proper design of enclosures to achieve higher heat transfer rates. In the present study, a two-dimensional cavity with adiabatic right side wall is studied. The left side vertical wall is maintained at the constant hot temperature and the top slat wall is maintained at cold temperature. The dimensionless governing partial differential equations for vorticity-stream function are solved using the finite difference method with incremental time steps. The parametric study involves a wide range of Rayleigh number, Ra, 103 ≤ Ra ≤ 105 and Prandtl number (Pr = 0.025, 0.71 and 10). The fluid flow within the enclosure is formed with different shapes for different Pr values. The flow rate is increased by enhancing the Rayleigh number (Ra = 104 ). The numerical results are validated with previous results. The governing parameters in the present article, namely Rayleigh number and Prandtl number on flow patterns, isotherms as well as local Nusselt number are reported. 


1986 ◽  
Vol 108 (2) ◽  
pp. 291-298 ◽  
Author(s):  
F. Karim ◽  
B. Farouk ◽  
I. Namer

This paper reports an experimental study of natural convection heat transfer from a horizontal isothermal cylinder between vertical adiabatic walls. Some of the industrial applications of this problem are cooling and casing design of electronic equipment, nuclear reactor safety, and heat extraction from solar thermal storage devices. Heat transfer from 3.81 cm and 2.54 cm diameter cylinders was determined by measuring the electric power supplied to the heater, which was placed inside the cylinders, and correcting for radiation and end losses. Average Nusselt numbers were determined for a Rayleigh number range of 2 × 103 to 3 × 105 and wall spacing to cylinder diameter ratios of 1.5, 2, 3, 4, 6, 8, 10, 12, and ∞. It was found that the confinement of a heated horizontal cylinder by adiabatic walls enhances the heat transfer from the cylinder continuously. This effect is more pronounced at low Rayleigh numbers. A maximum relative enhancement of 45 percent was obtained over the range of experimental conditions studied. Schlieren and flow visualization studies were conducted at selected values of Rayleigh number and wall spacing to cylinder diameter ratios to further explain the heat transfer characteristics and the associated flow physics of the present problem.


1981 ◽  
Vol 103 (4) ◽  
pp. 630-637 ◽  
Author(s):  
E. M. Sparrow ◽  
G. M. Chrysler

Experiments were performed to investigate the natural convection heat transfer characteristics of a short isothermal horizontal cylinder attached to an equi-temperature vertical plate. The apparatus was designed so that the cylinder could be attached to the plate at any one of three positions along the height of the plate. Two cylinders were employed (one at a time) during the course of the experiments, one of which had a length equal to its diameter while the other had a length that was half the diameter. At each attachment position and for each cylinder, the Rayleigh number (based on the cylinder diameter) ranged from 1.4 × 104 to 1.4 × 105. It was found that the interaction of the flat plate boundary layer with the cylinder brought about a reduction of the cylinder Nusselt number relative to that for the classical case of the long isolated horizontal cylinder without end effects. The respective deviations of the Nusselt numbers for the shorter and longer of the participating cylinders from the literature correlation for the isolated cylinder were twenty percent and ten percent. At a given Rayleigh number, the cylinder Nusselt number was quite insensitive to the position of the cylinder along the plate, with the typical data spread due to height being in the 5–7 percent range. The Nusselt number was also rather insensitive to cylinder length, showing a ten percent increase as the length-diameter ratio was increased from one-half to one.


1984 ◽  
Vol 106 (1) ◽  
pp. 124-130 ◽  
Author(s):  
E. M. Sparrow ◽  
D. R. Pfeil

A comprehensive experimental study has been performed to determine the natural convection heat transfer characteristics of a heated horizontal cylinder situated in a vertical channel in air. Fifteen different channel configurations were employed, encompassing a wide range of channel heights and of spacings between the channel walls. Shroud walls having various thermal characteristics (highly conducting, highly conducting/rear insulated, and insulating) were used to form the channel. For each configuration, the cylinder Rayleigh number ranged from 1.5 × 104 to 2 × 105. It was found that a cylinder situated in a channel experiences enhanced natural convection heat transfer compared with a cylinder situated in unbounded space. Enhancements of up to 40 percent were encountered for the parameter ranges of the experiments. The enhancement is accentuated as the interwall spacing is decreased and as the channel height is increased. There is no enhancement for interwall spacings of 10 diameters or more. It was also found that the Nusselt number was quite insensitive to the various types of shroud walls employed. Measured temperature distributions along the shroud walls displayed different degrees of uniformity depending on whether the wall was conducting or insulating.


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


Sign in / Sign up

Export Citation Format

Share Document