Online Identification of Shearing and Plowing Constants in End Milling

2003 ◽  
Vol 125 (1) ◽  
pp. 57-64 ◽  
Author(s):  
J.-J. Junz Wang ◽  
C. M. Zheng

Online methods for the identification of shearing and plowing cutting constants from forces in a single milling operation are presented. By virtue of the analytical nature of the milling force model in the frequency domain, the shearing and plowing constants are expressed, in a linear closed-form equation, in terms of cutter geometry, cutting depths and the Fourier coefficients of the milling forces. Two methods are presented to identify these cutting constants. The first method uses only the first harmonic components of the milling forces, and the second method utilizes the average forces as well as the ratio of the first harmonic forces. Limitations on the cutting conditions for each identification method are discussed. The accuracy and consistency of these two methods in extracting the shearing and plowing constants from a single set of force measurements are verified through simulation and milling experiments.

2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879818 ◽  
Author(s):  
Xianglei Zhang ◽  
Jing Zhang ◽  
Hongming Zhou ◽  
Yan Ren ◽  
Mingming Xu

A novel milling force model for cutting aviation aluminum alloy 7075 using carbide end mill is established in this article. A two-dimensional end-milling model is set up to investigate the influence of tool geometric parameters on milling force with the single-factor analysis. The relationship between milling forces and tool geometric parameters is obtained by nonlinear regression fitting method. Based on the existing empirical model of milling force, quadratic polynomial factor is taken into consideration to explore the influence of tool geometric parameters on milling force. Thus, a novel milling force model is built up which includes tool geometric parameters and milling parameters. The coefficients of the novel model are identified by the direct method and the loop method. The precisions of the coefficients obtained by the two methods are compared between prediction values and experiment values. After comparison, the model whose coefficients are obtained by loop method has higher prediction ability. End-milling experiments were carried out to verify the prediction accuracy of the novel milling force model. The result shows that the novel model of milling force has high accuracy in prediction. The method of building the milling force model proposed in this article can be applied to other types of milling cutter.


Author(s):  
C M Zheng ◽  
J -J Junz Wang

Two methods are presented for the estimation of tangential, radial and axial cutting coefficients for the shearing and ploughing mechanisms from a single set of cutting forces in ball-end milling. These estimation methods are based upon the invertibility of the analytical milling force model, which considers both the shearing and the ploughing mechanisms by incorporating their respective cutting constants in the local force model. The periodic milling forces are established as the convolution integral of the differential local cutting forces and their Fourier coefficients are derived and expressed in a matrix expression as a linear function of the unknown cutting constants in terms of cutting conditions and cutter geometry. This linear expression thus leads to a systematic formulation of the estimation methods allowing the six unknown cutting constants to be determined from the measured milling forces. The first method uses the first harmonic forces as the source signal while the second method extracts the six cutting constants from the average force as well as the first harmonics. Limitations of both estimation methods are discussed. The consistency and accuracy of the estimated cutting constants are confirmed by the experimental results.


2006 ◽  
Vol 532-533 ◽  
pp. 636-639
Author(s):  
Yong Gang Kang ◽  
Zhong Qi Wang ◽  
Wen Ming Lou ◽  
Cheng Yu Jiang

A new approach is proposed to model the milling force based on the cutting force shape characteristics in end milling. The relationship between the cutting force shape characteristics and the cutting depths is analyzed and milling forces are classified into 10 types according to the combination of cutting depths. Further, force indices are extracted and then the real cutting depths are detected based on the changes of force curve characteristics via the force indices in end milling process. Then, bring forward a method of modeling cutting force based on the different types, and the use of real cutting depth makes the model to be more accurately. More important, experiments designed on the classification of milling forces strengthen the pertinence, and makes the experiment data more reliable. The approach is validated through experiments on aluminum alloy 7050-T7451.


2011 ◽  
Vol 328-330 ◽  
pp. 90-95 ◽  
Author(s):  
Xin Jie Jia ◽  
Xiao Zhong Deng ◽  
Xiao Zhong Ren

Prediction of the forces in milling hypoid gear was often needed in order to establish automation and optimization of the tooth-milling processes. Based on the geometrical theory of the format face-milling, the multi-toothed milling forces theoretical model for form milling the gear of the hypoid gears is presented, the milling force factors were calibrated via single factor experiments and the simulation programs were prepared. Experiments were carried out to verify the availability of the multi-toothed dynamic milling force model, the experimental results is consistent with the simulation results.


2011 ◽  
Vol 66-68 ◽  
pp. 569-572
Author(s):  
Hai Chao Ye ◽  
Guo Hua Qin ◽  
Cong Kang Wang ◽  
Dong Lu

Machining deformation has always been a bottleneck issue in the manufacturing field of aeronautical monolithic components. On the base of finite element method, the effect of the process steps and tool paths on the workpiece stiffness and the redistribution of residual stress in the machining process of aeronautical frame monolithic component was investigated under the given fixturing scheme. Thus, the prediction of the workpiece deformation can be carried out in reason. The proposed simulation approach to deformation analysis can be used to observe the true characteristic of milling forces and machining deformations. Therefore, the proposed method can supply the theoretical basis for the determination of the optimal process parameters.


2015 ◽  
Vol 3 (3) ◽  
Author(s):  
Chi Xu ◽  
James Zhu ◽  
Shiv G. Kapoor

This paper presents a five-axis ball-end milling force model that is specifically tailored to microscale machining. A composite cutting force is generated by combining two force contributions from a shearing/ploughing slip-line (SL) field model and a quasi-static indentation (ID) model. To fully capture the features of microscale five-axis machining, a unique chip thickness algorithm based on the velocity kinematics of a ball-end mill is proposed. This formulation captures intricate tool trajectories as well as readily allows the integration of runout and elastic recovery effects. A workpiece updating algorithm has also been developed to identify tool–workpiece engagement. As a dual purpose, historical elastic recovery is stored locally on the meshed workpiece surface in vector form so that the directionality of elastic recovery is preserved for future time increments. The model has been validated through a comparison with five-axis end mill force data. Simulation results show reasonably accurate replication of end milling cutting forces with minimal experimental data fitting.


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Mehdi Mahmoodi ◽  
M. G. Mostofa ◽  
Martin Jun ◽  
Simon S. Park

Carbon nanotube (CNT) based polymeric composites exhibit high strength and thermal conductivity and can be electrically conductive at a low percolation threshold. CNT nanocomposites with polystyrene (PS) thermoplastic matrix were injection-molded and high shear stress in the flow direction enabled partial alignment of the CNTs. The samples with different CNT concentrations were prepared to study the effect of CNT concentration on the cutting behavior of the samples. Characterizations of CNT polymer composites were studied to relate different characteristics of materials such as thermal conductivity and mechanical properties to micromachining. Micro-end milling was performed to understand the material removal behavior of CNT nanocomposites. It was found that CNT alignment and concentrations influenced the cutting forces. The mechanistic micromilling force model was used to predict the cutting forces. The force model has been verified with the experimental milling forces. The machinability of the CNT nanocomposites was better than that of pure polymer due to the improved thermal conductivity and mechanical characteristics.


2019 ◽  
Vol 13 (3) ◽  
pp. 232-240
Author(s):  
Zhixin Feng ◽  
Meng Liu ◽  
Guohe Li

Background: Calibration of cutting coefficients is the key content in modeling a mechanistic cutting force model. Generally, in modeling cutting force for ball end milling, the tangent, radial and binormal cutting force coefficients are each considered as a polynomial, respectively. This fact is due to the dependency between the cutting force coefficients and the cutting edge inclination angle which is variable in ball-end mills. Objective: This paper presents an approach to determine the polynomial cutting force coefficients. Methods: In this approach, the cutting force coefficients are expressed as explicit linear equations about the average slotting forces. After analysis of the least square regression method which is utilized in the cutting coefficients evaluation, the principle of cutting parameters choice in calibration experiment and the relationship between the order of polynomial and the number of experiments are presented. Besides, a lot of patents on identification of polynomial cutting coefficients for milling force model were studied. Results: Finally, a series of semi-slotting verification cutting tests were arranged, the measured force agrees well with the predicted force, which demonstrates the effectiveness of this approach. Conclusion: Based on the calibration method proposed in this paper, the cutting coefficients can be determined through (m+2) slotting experiments for m-degree shearing coefficients polynomial theoretically.


Author(s):  
Bryan Javorek ◽  
Barry K. Fussell ◽  
Robert B. Jerard

Changes in cutting forces during a milling operation can be associated with tool wear and breakage. Accurate monitoring of these cutting forces is an important step towards the automation of the machining process. However, direct force sensors, such as dynamometers, are not practical for industry application due to high costs, unwanted compliance, and workspace limitations. This paper describes a method in which power sensors on the feed and spindle motors are used to generate coefficients for a cutting force model. The resulting model accurately predicts the X and Y cutting forces observed in several simple end-milling tests, and should be capable of estimating both the peak and average force for a given cut geometry. In this work, a dynamometer is used to calibrate the feed drive power sensor and to measure experimental cutting forces for verification of the cutting force model. Measurement of the average x-axis cutting forces is currently presented as an off-line procedure performed on a sacrificial block of material. The potential development of a continuous, real-time force monitoring system is discussed.


Sign in / Sign up

Export Citation Format

Share Document