A predicted milling force model for high-speed end milling operation

1997 ◽  
Vol 37 (7) ◽  
pp. 969-979 ◽  
Author(s):  
Kuang-Hua Fuh ◽  
Ren-Ming Hwang
2019 ◽  
Vol 13 (3) ◽  
pp. 232-240
Author(s):  
Zhixin Feng ◽  
Meng Liu ◽  
Guohe Li

Background: Calibration of cutting coefficients is the key content in modeling a mechanistic cutting force model. Generally, in modeling cutting force for ball end milling, the tangent, radial and binormal cutting force coefficients are each considered as a polynomial, respectively. This fact is due to the dependency between the cutting force coefficients and the cutting edge inclination angle which is variable in ball-end mills. Objective: This paper presents an approach to determine the polynomial cutting force coefficients. Methods: In this approach, the cutting force coefficients are expressed as explicit linear equations about the average slotting forces. After analysis of the least square regression method which is utilized in the cutting coefficients evaluation, the principle of cutting parameters choice in calibration experiment and the relationship between the order of polynomial and the number of experiments are presented. Besides, a lot of patents on identification of polynomial cutting coefficients for milling force model were studied. Results: Finally, a series of semi-slotting verification cutting tests were arranged, the measured force agrees well with the predicted force, which demonstrates the effectiveness of this approach. Conclusion: Based on the calibration method proposed in this paper, the cutting coefficients can be determined through (m+2) slotting experiments for m-degree shearing coefficients polynomial theoretically.


2010 ◽  
Vol 97-101 ◽  
pp. 1819-1822 ◽  
Author(s):  
Hou Ming Zhou ◽  
Jian Xin Deng ◽  
Zhen Yu Zhao ◽  
Shi Ping Yang

Finite element model of the matching of lengthened shrink-fit holder (LSFH) and cutting tool is established and a milling force model is developed to predict the transient milling force exactly using back propagation neural network (BPNN). Subsequently, the transient dynamic characteristic of matching of LSFH and cutting tool is analyzed and the simulation result is obtained. Finally, the simulation result is verified with practical measurement and the results fit very well. The studies are important to optimum design and select the lengthened shrink-fit holder in high speed milling.


2014 ◽  
Vol 800-801 ◽  
pp. 337-341 ◽  
Author(s):  
Yun Peng Ding ◽  
Xian Li Liu ◽  
Hui Nan Shi ◽  
Jiao Li ◽  
Rui Zhang

In this paper, a cutting force model in ball end milling of mold cavity corner is established. Based on infinitesimal milling force model, cutting element of ball end milling cutter is treated as equal diameter end milling cutter, then determine the location of points when the micro-element participated in the cutting, and the tool-workpiece contact area and cutting range is determined. Thereby a complete milling force model in corner machining with ball end milling cutter is established.


2011 ◽  
Vol 188 ◽  
pp. 3-8
Author(s):  
Shu Tao Huang ◽  
X.L. Yu ◽  
Li Zhou

SiCp/Al composites with high volume fraction and large particles are very difficult to machine. In this present study, high-speed milling experiments were carried out on the SiCp/Al composites by the three factors-levels orthogonal experiment method, and multiple linear regression analysis was employed to establish milling force model. The results show that the milling forces decrease with the increasing of the milling speed or increase with the increasing of the feed rate and depth of milling. The influence of milling depth on the milling forces in directions of x, y is the most significant, while the influence of the feed rate on the z-milling forces are the most significant. The calculation values from the milling force model are consistent with the experimental values. The results will provide a reliable theoretical guidance for milling of SiCp/Al composites, and it is feasible to predict the milling force during the milling of SiCp/Al by using this model.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879818 ◽  
Author(s):  
Xianglei Zhang ◽  
Jing Zhang ◽  
Hongming Zhou ◽  
Yan Ren ◽  
Mingming Xu

A novel milling force model for cutting aviation aluminum alloy 7075 using carbide end mill is established in this article. A two-dimensional end-milling model is set up to investigate the influence of tool geometric parameters on milling force with the single-factor analysis. The relationship between milling forces and tool geometric parameters is obtained by nonlinear regression fitting method. Based on the existing empirical model of milling force, quadratic polynomial factor is taken into consideration to explore the influence of tool geometric parameters on milling force. Thus, a novel milling force model is built up which includes tool geometric parameters and milling parameters. The coefficients of the novel model are identified by the direct method and the loop method. The precisions of the coefficients obtained by the two methods are compared between prediction values and experiment values. After comparison, the model whose coefficients are obtained by loop method has higher prediction ability. End-milling experiments were carried out to verify the prediction accuracy of the novel milling force model. The result shows that the novel model of milling force has high accuracy in prediction. The method of building the milling force model proposed in this article can be applied to other types of milling cutter.


2021 ◽  
Author(s):  
Ce Zhang ◽  
Changyou LI ◽  
Mengtao Xu ◽  
Guo Yao ◽  
Zhendong Liu ◽  
...  

Abstract Ball-end milling cutters are one of the most widely used cutters in the automotive, aerospace, die and machine parts industries. In addition, milling chatter will reduce the surface quality and production efficiency, resulting in noise. It is particularly important to model the cutting force and analyze the flutter stability of ball-end milling cutters. In this paper, a simplified milling force model of ball-end milling cutter with three degrees of freedom was established based on Merchant bevel cutting theory. The model simplified the milling force coefficient. The expressions of instantaneous milling area considering the vibration displacements in X, Y and Z directions were derived. The nonlinear dynamic cutting force model of ball-end milling cutter with three degrees of freedom was established. The nonlinear chatter vibration mechanical model of ball-end milling cutter with three degrees of freedom was established by introducing the time delay term, the stability analysis is carried out by time domain simulation. The proposed models were experimentally verified.


2010 ◽  
Vol 139-141 ◽  
pp. 827-830
Author(s):  
Hou Ming Zhou ◽  
Jian Xin Deng ◽  
Wen Wei Xie

Present work of this paper focus on developing a milling force model according to the characteristic of the matching of lengthened shrink-fit holder (LSFH) and cutter using back propagation neural network (BPNN). Time parameter is taken as a factor of the input vector besides 6 processing conditions which mainly affect the milling force, and then the forecasting of 3D transient milling forces are achieved. A lot of milling experiments were performed to get training and testing samples and a Matlab program was designed to evaluate and optimize the network. The test experiments show that the forecasting results are well agreed with the experimental results and the errors of 3D force components are less than 0.18. Besides an extended performance, the BPNN model has higher efficiency and higher accuracy than the customary analytical model.


2003 ◽  
Vol 125 (1) ◽  
pp. 57-64 ◽  
Author(s):  
J.-J. Junz Wang ◽  
C. M. Zheng

Online methods for the identification of shearing and plowing cutting constants from forces in a single milling operation are presented. By virtue of the analytical nature of the milling force model in the frequency domain, the shearing and plowing constants are expressed, in a linear closed-form equation, in terms of cutter geometry, cutting depths and the Fourier coefficients of the milling forces. Two methods are presented to identify these cutting constants. The first method uses only the first harmonic components of the milling forces, and the second method utilizes the average forces as well as the ratio of the first harmonic forces. Limitations on the cutting conditions for each identification method are discussed. The accuracy and consistency of these two methods in extracting the shearing and plowing constants from a single set of force measurements are verified through simulation and milling experiments.


2006 ◽  
Vol 532-533 ◽  
pp. 636-639
Author(s):  
Yong Gang Kang ◽  
Zhong Qi Wang ◽  
Wen Ming Lou ◽  
Cheng Yu Jiang

A new approach is proposed to model the milling force based on the cutting force shape characteristics in end milling. The relationship between the cutting force shape characteristics and the cutting depths is analyzed and milling forces are classified into 10 types according to the combination of cutting depths. Further, force indices are extracted and then the real cutting depths are detected based on the changes of force curve characteristics via the force indices in end milling process. Then, bring forward a method of modeling cutting force based on the different types, and the use of real cutting depth makes the model to be more accurately. More important, experiments designed on the classification of milling forces strengthen the pertinence, and makes the experiment data more reliable. The approach is validated through experiments on aluminum alloy 7050-T7451.


Sign in / Sign up

Export Citation Format

Share Document