A Graphical Method to Find the Secondary Instantaneous Centers of Zero Velocity for the Double Butterfly Linkage

2003 ◽  
Vol 125 (2) ◽  
pp. 268-274 ◽  
Author(s):  
David E. Foster ◽  
Gordon R. Pennock

The Aronhold-Kennedy theorem cannot locate all of the instantaneous centers of zero velocity for a planar, single-degree-of-freedom, indeterminate linkage. This paper presents a graphical technique that will locate the secondary instantaneous centers of zero velocity for a well-known indeterminate linkage; namely, the double butterfly linkage. Only one of the secondary instant centers of this eight-bar linkage needs to be located with the proposed technique; the remaining instant centers can then be located using the Aronhold-Kennedy theorem. The first step in the graphical method is to regard the double butterfly linkage as two six-bar linkages. This is accomplished by replacing the ternary link pinned to the ground by two binary links, removing the pin which connects the two coupler links, and attaching a slider to each coupler link at the coupler pin. The second step is to reduce two of the five-bar loops of the double butterfly linkage to four-bar loops by instantaneously freezing the aforementioned binary links. The paper shows how these two important steps are used to locate the absolute instant centers for the two coupler links of this indeterminate eight-bar linkage.

2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

2014 ◽  
Vol 567 ◽  
pp. 499-504 ◽  
Author(s):  
Zubair Imam Syed ◽  
Mohd Shahir Liew ◽  
Muhammad Hasibul Hasan ◽  
Srikanth Venkatesan

Pressure-impulse (P-I) diagrams, which relates damage with both impulse and pressure, are widely used in the design and damage assessment of structural elements under blast loading. Among many methods of deriving P-I diagrams, single degree of freedom (SDOF) models are widely used to develop P-I diagrams for damage assessment of structural members exposed to blast loading. The popularity of the SDOF method in structural response calculation in its simplicity and cost-effective approach that requires limited input data and less computational effort. The SDOF model gives reasonably good results if the response mode shape is representative of the real behaviour. Pressure-impulse diagrams based on SDOF models are derived based on idealised structural resistance functions and the effect of few of the parameters related to structural response and blast loading are ignored. Effects of idealisation of resistance function, inclusion of damping and load rise time on P-I diagrams constructed from SDOF models have been investigated in this study. In idealisation of load, the negative phase of the blast pressure pulse is ignored in SDOF analysis. The effect of this simplification has also been explored. Matrix Laboratory (MATLAB) codes were developed for response calculation of the SDOF system and for repeated analyses of the SDOF models to construct the P-I diagrams. Resistance functions were found to have significant effect on the P-I diagrams were observed. Inclusion of negative phase was found to have notable impact of the shape of P-I diagrams in the dynamic zone.


Sign in / Sign up

Export Citation Format

Share Document