Research of Underfill Delamination in Flip Chip by the J-Integral Method

2004 ◽  
Vol 126 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Bulu Xu ◽  
Xia Cai ◽  
Weidong Huang ◽  
Zhaonian Cheng

Fracture mechanics approaches have been used to study reliability problems in electronic packages, in particular, adhesion related failure in flip chip assembly. It was verified in this work that the J-integral with a special flat rectangular contour near the crack tip can be used as energy release rate at the interface between chip and underfill. Meanwhile, the delamination propagation rates at the interface was measured by using C-mode scanning acoustic microscope (C-SAM) inspection for two types of flip chip packages under thermal cycle loading. Finally, the half-empirical Paris equation, which can be used as a design base of delamination reliability in flip chip package, has been determined from the crack propagation rates measured and the energy release rates simulated.

1977 ◽  
Vol 13 (2) ◽  
pp. 257-259 ◽  
Author(s):  
A. Luxmoore ◽  
M. F. Light ◽  
W. T. Evans

2005 ◽  
Vol 128 (3) ◽  
pp. 383-392 ◽  
Author(s):  
Brajabandhu Pradhan ◽  
Saroja Kanta Panda

The present study encompasses the thermoelastic effect of material anisotropy and curing stresses on interlaminar embedded elliptical delamination fracture characteristics in multiply laminated fiber-reinforced polymeric (FRP) composites. Two sets of full three-dimensional finite element analyses have been performed to calculate the displacements and interlaminar stresses along the delaminated interface responsible for the delamination onset and propagation. Modified crack closure integral methods based on the concepts of linear elastic fracture mechanics have been followed to evaluate the individual modes of strain energy release rates along the delamination front. It is shown that the individual modes of energy release rates vary along the delamination front depending on the ply sequence, orientation, and thermoelastic material anisotropy of the constituting laminae. This causes the anisotropic and non-self similar delamination propagation along the interface. The asymmetric and nonuniform variations in the nature of energy release rate plots obtained in a thermomechanical loading environment are significant when curing stress effects are included in the numerical analysis and hence should be taken into account in the designs of laminated FRP composite structures.


1981 ◽  
Vol 48 (3) ◽  
pp. 525-528 ◽  
Author(s):  
A. Golebiewska Herrmann ◽  
G. Herrmann

Considered is a plane crack in a homogeneous, static stress field. The component of the Ji integral normal to the plane of the crack (J2) is shown not to be path-independent in the sense of the well-known J integral (≡ J1) parallel to the plane of the crack. The relation between the energy-release rate for rotation L and the integral J2 is established. It is finally suggested that the integrals L and M may provide a more natural description of energy-release rates (or forces) for plane cracks, rather than the integrals J1 and J2.


2003 ◽  
Vol 70 (4) ◽  
pp. 505-516 ◽  
Author(s):  
T. Nishioka ◽  
S. Syano ◽  
T. Fujimoto

First, this paper presents the concepts of separated J-integrals and separated energy release rates. The path-independent separated J-integrals have the physical significance of energy flows into an interfacial crack tip from adjacent individual material sides or, equivalently, separated energy release rates. Thus, the J-integral and the energy release rate can be evaluated by the sum of the path-independent separated J-integrals. Second, the relations between the separated J-integrals and the stress intensity factors are derived. Third, the component separation method of the J-integral is extended for interfacial crack problems to allow accurate evaluation of the stress intensity factors. Finally, pertinent numerical analyses are carried out to demonstrate the usefulness of the separated J-integrals and the component separation method.


2019 ◽  
Author(s):  
Luca Di Stasio ◽  
Janis Varna ◽  
Zoubir Ayadi

The effects of crack shielding, finite thickness of the composite and fiber content on fiber/matrix debond growth in thin unidirectional composites are investigated analyzing Representative Volume Elements (RVEs) of different ordered microstructures. Debond growth is characterized by estimation of the Energy Release Rates (ERRs) in Mode I and Mode II using the Virtual Crack Closure Technique (VCCT) and the J-integral. It is found that increasing fiber content, a larger distance between debonds in the loading direction and the presence of a free surface close to the debond have all a strong enhancing effect on the ERR. The presence of fully bonded fibers in the composite thickness direction has instead a constraining effect, and it is shown to be very localized. An explanation of these observations is proposed based on mechanical considerations.


Sign in / Sign up

Export Citation Format

Share Document