scholarly journals Erratum: “An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Noncircular Microchannels,” [Journal of Fluids Engineering, 2003, 125, pp. 887–894]

2004 ◽  
Vol 126 (4) ◽  
pp. 708-708 ◽  
Author(s):  
S. Garimella, ◽  
J. D. Killion, and ◽  
J. W. Coleman
2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Akhil Agarwal ◽  
Srinivas Garimella

This paper presents a multiple flow-regime model for pressure drop during condensation of refrigerant R134a in horizontal microchannels. Condensation pressure drops measured in two circular and six noncircular channels ranging in hydraulic diameter from 0.42mmto0.8mm are considered here. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from 100% vapor to 100% liquid for five different refrigerant mass fluxes between 150kg∕m2s and 750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to assign the applicable flow regime to the data points. Garimella et al. (2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3) pp. 1–8) reported a comprehensive model for circular tubes that addresses the progression of the condensation process from the vapor phase to the liquid phase by modifying and combining the pressure drop models for intermittent (Garimella et al., 2002, “An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels,” ASME J. Fluids Eng., 124(1), pp. 205–214) and annular (Garimella et al., 2003, “Two-Phase Pressure Drops in the Annular Flow Regime in Circular Microchannels,” 21st IIR International Congress of Refrigeration, International Institute of Refrigeration, p. ICR0360) flows reported earlier by them. This paper presents new condensation pressure drop data on six noncircular channels over the same flow conditions as the previous work on circular channels. In addition, a multiple flow-regime model similar to that developed earlier by Garimella et al. for circular microchannels is developed here for these new cross sections. This combined model accurately predicts condensation pressure drops in the annular, disperse-wave, mist, discrete-wave, and intermittent flow regimes for both circular and noncircular microchannels of similar hydraulic diameters. Overlap and transition regions between the respective regimes are also addressed to yield relatively smooth transitions between the predicted pressure drops. The resulting model predicts 80% of the data within ±25%. The effect of tube shape on pressure drop is also demonstrated.


Author(s):  
Srinivas Garimella ◽  
Jesse D. Killion ◽  
John W. Coleman

This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal, noncircular microchannels. Two-phase pressure drops were measured in six noncircular channels ranging in hydraulic diameter from 0.42 mm to 0.84 mm. The tube shapes included square, rectangular, triangular, barrel-shaped, and others. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from vapor to liquid at five different refrigerant mass fluxes between 150 kg/m2s and 750 kg/m2s. Results from previous work by the authors were used to select the data that correspond to the intermittent flow regime; generally, these points had qualities less than 25%. The pressure drop model previously developed by the authors for circular microchannels was used as the basis for the model presented in this paper. The model includes the contributions of the liquid slug, the vapor bubble, and the transitions between the bubbles and slugs. Slug frequency was estimated using a simple correlation for non-dimensional unit-cell length. The model predicts the experimentally measured pressure drops for the noncircular tube shapes under consideration with 90% of the predictions within ±28% of the measurements (average error 16.5%), which is shown to be much better than the predictions of other models in the literature. The effects of tube shape on condensation pressure drop are also illustrated in the paper.


2001 ◽  
Vol 124 (1) ◽  
pp. 205-214 ◽  
Author(s):  
S. Garimella ◽  
J. D. Killion ◽  
J. W. Coleman

This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal microchannels. Two-phase pressure drops were measured in five circular channels ranging in hydraulic diameter from 0.5 mm to 4.91 mm. For each tube under consideration, pressure drop measurements were first taken over the entire range of qualities from 100% vapor to 100% liquid. In addition, the tests for each tube were conducted for five different refrigerant mass fluxes between 150 kg/m2-s and 750 kg/m2-s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were then used to identify data that corresponded to the intermittent flow regime. A pressure drop model was developed for a unit cell in the channel based on the observed slug/bubble flow pattern for these conditions. The unit cell comprises a liquid slug followed by a vapor bubble that is surrounded by a thin, annular liquid film. Contributions of the liquid slug, the vapor bubble, and the flow of liquid between the film and slug to the pressure drop were included. Empirical data from the literature for the relative length and velocity of the slugs and bubbles, and relationships from the literature for the pressure loss associated with the mixing that occurs between the slug and film were used with assumptions about individual phase friction factors, to estimate the total pressure drop in each unit cell. A simple correlation for non-dimensional unit-cell length based on slug Reynolds number was then used to estimate the total pressure drop. The results from this model were on average within ±13.4% of the measured data, with 88% of the predicted results within ±25% of the 77 measured data points.


2003 ◽  
Vol 125 (5) ◽  
pp. 887-894 ◽  
Author(s):  
Srinivas Garimella ◽  
Jesse D. Killion ◽  
John W. Coleman

This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal, noncircular microchannels. Two-phase pressure drops were measured in six noncircular channels ranging in hydraulic diameter from 0.42 mm to 0.84 mm. The tube shapes included square, rectangular, triangular, barrel-shaped, and others. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from vapor to liquid at five different refrigerant mass fluxes between 150 kg/m2s and 750 kg/m2s. Results from previous work by the authors were used to select the data that correspond to the intermittent flow regime; generally, these points had qualities less than 25%. The pressure drop model previously developed by the authors for circular microchannels was used as the basis for the model presented in this paper. Using the observed slug/bubble flow pattern for these conditions, the model includes the contributions of the liquid slug, the vapor bubble, and the transitions between the bubble and slugs. A simple correlation for nondimensional unit-cell length was used to estimate the slug frequency. The model successfully predicts the experimentally measured pressure drops for the noncircular tube shapes under consideration with 90% of the predictions within ±28% of the measurements (average error 16.5%), which is shown to be much better than the predictions of other models in the literature. The effects of tube shape on condensation pressure drop are also illustrated in the paper.


Author(s):  
Ahmad Fazeli ◽  
Ali Vatani

Two-phase flow pipelines are utilized in simultaneous transferring of liquid and gas from reservoir fields to production units and refineries. In order to obtain the hydraulic design of pipelines, pressure drop and liquid holdup were calculated following pipeline flow regime determination. Two semi-empirical and mechanistical models were used. Empirical models e.g. Beggs & Brill, 1973, are only applicable in certain situations were pipeline conditions are adaptable to the model; therefore we used the Taitel & Dukler, 1976, Baker et al., 1988, Petalas & Aziz, 1998, and Gomez et al., 1999, mechanistical models which are practical in more extensive conditions. The FLOPAT code was designed and utilized which is capable of the determining the physical properties of the fluid by either compositional or non-compositional (black oil) fluid models. It was challenged in various pipeline positions e. g. horizontal, vertical and inclined. Specification of the flow regime and also pressure drop and liquid holdup could precisely be calculated by mechanistical models. The flow regimes considered in the pipeline were: stratified, wavy & annular (Segregated Flow), plug & slug (Intermittent Flow) and bubble & mist (Distributive Flow). We also compared output results against the Stanford Multiphase Flow Database which were used by Petalas & Aziz, 1998, and the effect of the flow rate, pipeline diameter, inclination, temperature and pressure on the flow regime, liquid holdup and pressure drop were studied. The outputs (flow regime, pressure drop and liquid holdup) were comparable with the existing pipeline data. Moreover, by this comparison one may possibly suggest the more suitable model for usage in a certain pipeline.


2021 ◽  
Author(s):  
Faraj Ben Rajeb ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
Amer Aborig ◽  
Mohamed M. Awad ◽  
...  

Abstract Slug flow is one of the most common flow patterns in non-Newtonian two-phase flow in pipes. It is a very common occurrence in gas-liquid two-phase flow in the pipe. Usually, it is an unfavorable flow pattern due to its unsteady nature, intermittency as well as high pressure drop. The differences between slug flow and elongated bubble flow are not clear because usually these two types of flow combined under one flow category. In general, these two-phase flow regimes are commonly defined as intermittent flow. In the present study, pressure gradient, and wave behavior in slug flow have been investigated depending on experimental work. In addition, void fraction has been estimated regarding available superficial liquid and gas velocities. The experimental records of superficial velocities of gas and liquid for slug flow and other flow patterns is used to create flow regime map for the gas non-Newtonian flow system. The effect of investigated flow regime velocities for non-Newtonian/gas flow on pressure drop and void fraction is reported. Pressure drop has been discovered to be reduced in slug flow more than other flow patterns due to high shear thinning behavior.


Author(s):  
Srinivas Garimella ◽  
Akhil Agarwal ◽  
Jesse D. Killion

This paper presents a multiple flow-regime model for pressure drop during condensation of refrigerant R134a in horizontal microchannels. Two-phase pressure drops were measured in five circular channels ranging in hydraulic diameter from 0.5 mm to 4.91 mm. For each tube under consideration, pressure drop measurements were first taken over the entire range of qualities from 100% vapor to 100% liquid for five different refrigerant mass fluxes between 150 kg/m2-s and 750 kg/m2-s. Results from previous work by the author on condensation flow mechanisms in microchannel geometries were used to assign the applicable flow regime to the data points. Pressure drop models for intermittent (Garimella et al. 2002) and annular (Garimella et al. 2003a) flow reported earlier by the authors were modified and combined to develop a comprehensive model that addresses the entire progression of the condensation process from the vapor phase to the liquid phase. This combined model accurately predicts condensation pressure drops in the annular, disperse wave, mist, discrete wave, and intermittent flow regimes. Overlap and transition regions between the respective regimes are also addressed using an appropriate interpolation technique that results in relatively smooth transitions between the predicted pressure drops. The resulting model predicts 82% of the data within ±20%.


Sign in / Sign up

Export Citation Format

Share Document