An Expermentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Noncircular Microchannels

2003 ◽  
Vol 125 (5) ◽  
pp. 887-894 ◽  
Author(s):  
Srinivas Garimella ◽  
Jesse D. Killion ◽  
John W. Coleman

This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal, noncircular microchannels. Two-phase pressure drops were measured in six noncircular channels ranging in hydraulic diameter from 0.42 mm to 0.84 mm. The tube shapes included square, rectangular, triangular, barrel-shaped, and others. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from vapor to liquid at five different refrigerant mass fluxes between 150 kg/m2s and 750 kg/m2s. Results from previous work by the authors were used to select the data that correspond to the intermittent flow regime; generally, these points had qualities less than 25%. The pressure drop model previously developed by the authors for circular microchannels was used as the basis for the model presented in this paper. Using the observed slug/bubble flow pattern for these conditions, the model includes the contributions of the liquid slug, the vapor bubble, and the transitions between the bubble and slugs. A simple correlation for nondimensional unit-cell length was used to estimate the slug frequency. The model successfully predicts the experimentally measured pressure drops for the noncircular tube shapes under consideration with 90% of the predictions within ±28% of the measurements (average error 16.5%), which is shown to be much better than the predictions of other models in the literature. The effects of tube shape on condensation pressure drop are also illustrated in the paper.

Author(s):  
Srinivas Garimella ◽  
Jesse D. Killion ◽  
John W. Coleman

This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal, noncircular microchannels. Two-phase pressure drops were measured in six noncircular channels ranging in hydraulic diameter from 0.42 mm to 0.84 mm. The tube shapes included square, rectangular, triangular, barrel-shaped, and others. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from vapor to liquid at five different refrigerant mass fluxes between 150 kg/m2s and 750 kg/m2s. Results from previous work by the authors were used to select the data that correspond to the intermittent flow regime; generally, these points had qualities less than 25%. The pressure drop model previously developed by the authors for circular microchannels was used as the basis for the model presented in this paper. The model includes the contributions of the liquid slug, the vapor bubble, and the transitions between the bubbles and slugs. Slug frequency was estimated using a simple correlation for non-dimensional unit-cell length. The model predicts the experimentally measured pressure drops for the noncircular tube shapes under consideration with 90% of the predictions within ±28% of the measurements (average error 16.5%), which is shown to be much better than the predictions of other models in the literature. The effects of tube shape on condensation pressure drop are also illustrated in the paper.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Akhil Agarwal ◽  
Srinivas Garimella

This paper presents a multiple flow-regime model for pressure drop during condensation of refrigerant R134a in horizontal microchannels. Condensation pressure drops measured in two circular and six noncircular channels ranging in hydraulic diameter from 0.42mmto0.8mm are considered here. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from 100% vapor to 100% liquid for five different refrigerant mass fluxes between 150kg∕m2s and 750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to assign the applicable flow regime to the data points. Garimella et al. (2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3) pp. 1–8) reported a comprehensive model for circular tubes that addresses the progression of the condensation process from the vapor phase to the liquid phase by modifying and combining the pressure drop models for intermittent (Garimella et al., 2002, “An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels,” ASME J. Fluids Eng., 124(1), pp. 205–214) and annular (Garimella et al., 2003, “Two-Phase Pressure Drops in the Annular Flow Regime in Circular Microchannels,” 21st IIR International Congress of Refrigeration, International Institute of Refrigeration, p. ICR0360) flows reported earlier by them. This paper presents new condensation pressure drop data on six noncircular channels over the same flow conditions as the previous work on circular channels. In addition, a multiple flow-regime model similar to that developed earlier by Garimella et al. for circular microchannels is developed here for these new cross sections. This combined model accurately predicts condensation pressure drops in the annular, disperse-wave, mist, discrete-wave, and intermittent flow regimes for both circular and noncircular microchannels of similar hydraulic diameters. Overlap and transition regions between the respective regimes are also addressed to yield relatively smooth transitions between the predicted pressure drops. The resulting model predicts 80% of the data within ±25%. The effect of tube shape on pressure drop is also demonstrated.


Author(s):  
Srinivas Garimella ◽  
Akhil Agarwal ◽  
Jesse D. Killion

This paper presents a multiple flow-regime model for pressure drop during condensation of refrigerant R134a in horizontal microchannels. Two-phase pressure drops were measured in five circular channels ranging in hydraulic diameter from 0.5 mm to 4.91 mm. For each tube under consideration, pressure drop measurements were first taken over the entire range of qualities from 100% vapor to 100% liquid for five different refrigerant mass fluxes between 150 kg/m2-s and 750 kg/m2-s. Results from previous work by the author on condensation flow mechanisms in microchannel geometries were used to assign the applicable flow regime to the data points. Pressure drop models for intermittent (Garimella et al. 2002) and annular (Garimella et al. 2003a) flow reported earlier by the authors were modified and combined to develop a comprehensive model that addresses the entire progression of the condensation process from the vapor phase to the liquid phase. This combined model accurately predicts condensation pressure drops in the annular, disperse wave, mist, discrete wave, and intermittent flow regimes. Overlap and transition regions between the respective regimes are also addressed using an appropriate interpolation technique that results in relatively smooth transitions between the predicted pressure drops. The resulting model predicts 82% of the data within ±20%.


Author(s):  
Akhil Agarwal ◽  
Srinivas Garimella

This paper presents a multiple flow-regime model for pressure drop during condensation of refrigerant R134a in horizontal microchannels. Condensation pressure drops measured in two circular and six non-circular channels ranging in hydraulic diameter from 0.42 mm to 0.8 mm are considered here. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from 100% vapor to 100% liquid for five different refrigerant mass fluxes between 150 kg/m2-s and 750 kg/m2-s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to assign the applicable flow regime to the data points. Garimella et al. [1] reported a comprehensive model for circular tubes that addresses the progression of the condensation process from the vapor phase to the liquid phase by modifying and combining the pressure drop models for intermittent [2] and annular [3] flows reported earlier by them. In this paper, the multiple flow regime model of Garimella et al. [1] for circular microchannels has been extended to horizontal non-circular microchannels of a variety of cross-sections. This combined model accurately predicts condensation pressure drops in the annular, disperse wave, mist, discrete wave, and intermittent flow regimes for both circular and non-circular microchannels of similar hydraulic diameters. Overlap and transition regions between the respective regimes are also addressed using an appropriate interpolation technique that results in relatively smooth transitions between the predicted pressure drops. The resulting model predicts 80% of the data within ±25%. The effect of tube shape on pressure drop is also demonstrated.


2001 ◽  
Vol 124 (1) ◽  
pp. 205-214 ◽  
Author(s):  
S. Garimella ◽  
J. D. Killion ◽  
J. W. Coleman

This paper reports the development of an experimentally validated model for pressure drop during intermittent flow of condensing refrigerant R134a in horizontal microchannels. Two-phase pressure drops were measured in five circular channels ranging in hydraulic diameter from 0.5 mm to 4.91 mm. For each tube under consideration, pressure drop measurements were first taken over the entire range of qualities from 100% vapor to 100% liquid. In addition, the tests for each tube were conducted for five different refrigerant mass fluxes between 150 kg/m2-s and 750 kg/m2-s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were then used to identify data that corresponded to the intermittent flow regime. A pressure drop model was developed for a unit cell in the channel based on the observed slug/bubble flow pattern for these conditions. The unit cell comprises a liquid slug followed by a vapor bubble that is surrounded by a thin, annular liquid film. Contributions of the liquid slug, the vapor bubble, and the flow of liquid between the film and slug to the pressure drop were included. Empirical data from the literature for the relative length and velocity of the slugs and bubbles, and relationships from the literature for the pressure loss associated with the mixing that occurs between the slug and film were used with assumptions about individual phase friction factors, to estimate the total pressure drop in each unit cell. A simple correlation for non-dimensional unit-cell length based on slug Reynolds number was then used to estimate the total pressure drop. The results from this model were on average within ±13.4% of the measured data, with 88% of the predicted results within ±25% of the 77 measured data points.


Author(s):  
Ahmad Fazeli ◽  
Ali Vatani

Two-phase flow pipelines are utilized in simultaneous transferring of liquid and gas from reservoir fields to production units and refineries. In order to obtain the hydraulic design of pipelines, pressure drop and liquid holdup were calculated following pipeline flow regime determination. Two semi-empirical and mechanistical models were used. Empirical models e.g. Beggs & Brill, 1973, are only applicable in certain situations were pipeline conditions are adaptable to the model; therefore we used the Taitel & Dukler, 1976, Baker et al., 1988, Petalas & Aziz, 1998, and Gomez et al., 1999, mechanistical models which are practical in more extensive conditions. The FLOPAT code was designed and utilized which is capable of the determining the physical properties of the fluid by either compositional or non-compositional (black oil) fluid models. It was challenged in various pipeline positions e. g. horizontal, vertical and inclined. Specification of the flow regime and also pressure drop and liquid holdup could precisely be calculated by mechanistical models. The flow regimes considered in the pipeline were: stratified, wavy & annular (Segregated Flow), plug & slug (Intermittent Flow) and bubble & mist (Distributive Flow). We also compared output results against the Stanford Multiphase Flow Database which were used by Petalas & Aziz, 1998, and the effect of the flow rate, pipeline diameter, inclination, temperature and pressure on the flow regime, liquid holdup and pressure drop were studied. The outputs (flow regime, pressure drop and liquid holdup) were comparable with the existing pipeline data. Moreover, by this comparison one may possibly suggest the more suitable model for usage in a certain pipeline.


Author(s):  
R. Yun ◽  
Y. Kim

Two-phase pressure drops of CO2 are investigated in mini tubes with inner diameters of 2.0 and 0.98 mm and in microchannels with hydraulic diameters from 1.08 to 1.54 mm. For the mini tubes, the tests were conducted with a variation of mass flux from 500 to 3570 kg/m2s, heat flux from 7 to 48 kW/m2, while maintaining saturation temperatures at 0°C, 5°C and 10°C. For the microchannels, mass flux was varied from 100 to 400 kg/m2s, and heat flux was altered from 5 to 20 kW/m2. A direct heating method was used to provide heat into the refrigerants. The pressure drop of CO2 in mini tubes shows very similar trends with that in large diameter tubes. Although the microchannel has a small hydraulic diameter, two-phase effects on frictional pressure drop are significant. The Chisholm parameter of the Lockhart and Martinelli correlation is modified by considering diameter effects on the two-phase frictional multiplier.


Author(s):  
Chin L. Ong ◽  
John R. Thome

Experimental adiabatic two-phase pressure drops data for refrigerants R134a, R236fa and R245fa during flow boiling in small channels with internal diameters of 1.03, 2.20 and 3.04 mm are presented. The main purpose was to investigate the effects of channel confinement on adiabatic two-phase pressure drops. Thus, the two-phase pressure drop trends were systematically investigated over a wide range of test conditions for all three refrigerants and channel sizes. Statistical comparisons have also been made by comparing the experimental pressure drop data database with various macroscale and microscale prediction methods from the literature. The comparison showed relatively moderate accuracy for three prediction methods developed for macroscale flows, i.e. Baroczy and Chisholm, Friedel and the homogeneous model with the Cicchitti et al. viscosity relation. As for microscale prediction methods, the Cioncolini et al. annular flow model worked best with 68.5% of the data within ± 30%, followed by the Sun and Mishima and the Zhang et al. methods. Combining this database with the LTCM lab’s earlier database for 0.509 and 0.790 mm channels, there appears to be no evidence of a macro-to-microscale transition, at least with respect to two-phase pressure drops.


Sign in / Sign up

Export Citation Format

Share Document