Measured Adiabatic Effectiveness and Heat Transfer for Blowing From the Tip of a Turbine Blade

2005 ◽  
Vol 127 (2) ◽  
pp. 251-262 ◽  
Author(s):  
J. R. Christophel ◽  
E. Couch ◽  
K. A. Thole ◽  
F. J. Cunha

The clearance gap between the tip of a turbine blade and the shroud has an inherent leakage flow from the pressure side to the suction side of the blade. This leakage flow of combustion gas and air mixtures leads to severe heat transfer rates on the blade tip of the high-pressure turbine. As the thermal load to the blade increases, blade alloy oxidation and erosion rates increase thereby adversely affecting component life. The subject of this paper is the cooling effectiveness levels and heat transfer coefficients that result from blowing through two holes placed in the forward region of a blade tip. These holes are referred to as dirt purge holes and are generally required for manufacturing purposes and expelling dirt from the coolant flow when operating in sandy environments. Experiments were performed in a linear blade cascade for two tip-gap heights over a range of blowing ratios. Results indicated that the cooling effectiveness was highly dependent on the tip-gap clearance with better cooling achieved at smaller clearances. Also, heat transfer was found to increase with blowing. In considering an overall benefit of cooling from the dirt purge blowing, a large benefit was realized for a smaller tip gap as compared with a larger tip gap.

Author(s):  
J. Christophel ◽  
E. Couch ◽  
K. A. Thole ◽  
F. J. Cunha

The clearance gap between the tip of a turbine blade and the shroud has an inherent leakage flow from the pressure side to the suction side of the blade. This leakage flow of combustion gas and air mixtures leads to severe heat transfer rates on the blade tip of the high pressure turbine. As the thermal load to the blade increases, blade alloy oxidation and erosion rates increase thereby adversely affecting component life. The subject of this paper is the cooling effectiveness levels and heat transfer coefficients that result from blowing through two holes placed in the forward region of a blade tip. These holes are referred to as dirt purge holes and are generally required for manufacturing purposes and expelling dirt from the coolant flow when operating in sandy environments. Experiments were performed in a linear blade cascade for two tip gap heights over a range of blowing ratios. Results indicated that the cooling effectiveness was highly dependent upon the tip gap clearance with better cooling achieved at smaller clearances. Also, heat transfer was found to increase with blowing. In considering an overall benefit of cooling from the dirt purge blowing, a large benefit was realized for a smaller tip gap as compared with a larger tip gap.


Author(s):  
J. R. Christophel ◽  
K. A. Thole ◽  
F. J. Cunha

The clearance gap between a turbine blade tip and its associated shroud allows leakage flow across the tip gap from the pressure side to the suction side of the blade. Understanding how this leakage flow affects heat transfer is critical in extending blade tip durability in terms of oxidation, erosion, clearance, and overall turbine performance. This paper is the second of a two part series that discusses the augmentation of tip heat transfer as a result of blowing from the pressure side of the tip as well as dirt purge holes placed on the tip. For the experimental investigation, three scaled-up blades were used to form a two-passage linear cascade in a low speed wind tunnel. The rig was designed to simulate different tip gap sizes and coolant flow rates. Heat transfer coefficients were quantified by measuring the total power supplied to a constant heat flux surface placed on the tip of the blade and measuring the tip temperatures. Results indicate that increased blowing leads to increased augmentations in tip heat transfer, particularly at the entrance region to the gap. When combined with adiabatic effectiveness measurements, the coolant from the pressure side holes provides an overall net heat flux reduction to the blade tip but is nearly independent of coolant flow levels.


2005 ◽  
Vol 127 (2) ◽  
pp. 278-286 ◽  
Author(s):  
J. R. Christophel ◽  
K. A. Thole ◽  
F. J. Cunha

The clearance gap between a turbine blade tip and its associated shroud allows leakage flow across the tip from the pressure side to the suction side of the blade. Understanding how this leakage flow affects heat transfer is critical in extending the durability of a blade tip, which is subjected to effects of oxidation and erosion. This paper is the second of a two-part series that discusses the augmentation of tip heat transfer coefficients as a result of blowing from film-cooling holes placed along the pressure side of a blade and from dirt purge holes placed on the tip. For the experimental investigation, three scaled-up blades were used to form a two-passage, linear cascade in a low-speed wind tunnel. The rig was designed to simulate different tip gap sizes and film-coolant flow rates. Heat transfer coefficients were quantified by using a constant heat flux surface placed along the blade tip. Results indicate that increased film-coolant injection leads to increased augmentation levels of tip heat transfer coefficients, particularly at the entrance region to the gap. Despite increased heat transfer coefficients, an overall net heat flux reduction to the blade tip results from pressure-side cooling because of the increased adiabatic effectiveness levels. The area-averaged results of the net heat flux reduction for the tip indicate that there is (i) little dependence on coolant flows and (ii) more cooling benefit for a small tip gap relative to that of a large tip gap.


Author(s):  
Qihe Huang ◽  
Jiao Wang ◽  
Lei He ◽  
Qiang Xu

A numerical study is performed to simulate the tip leakage flow and heat transfer on the first stage rotor blade tip of GE-E3 turbine, which represents a modern gas turbine blade geometry. Calculations consist of the flat blade tip without and with film cooling. For the flat tip without film cooling case, in order to investigate the effect of tip gap clearance on the leakage flow and heat transfer on the blade tip, three different tip gap clearances of 1.0%, 1.5% and 2.5% of the blade span are considered. And to assess the performance of the turbulence models in correctly predicting the blade tip heat transfer, the simulations have been performed by using four different models (the standard k-ε, the RNG k-ε, the standard k-ω and the SST models), and the comparison shows that the standard k-ω model provides the best results. All the calculations of the flat tip without film cooling have been compared and validated with the experimental data of Azad[1] and the predictions of Yang[2]. For the flat tip with film cooling case, three different blowing ratio (M = 0.5, 1.0, and 1.5) have been studied to the influence on the leakage flow in tip gap and the cooling effectiveness on the blade tip. Tip film cooling can largely reduce the overall heat transfer on the tip. And the blowing ratio M = 1.0, the cooling effect for the blade tip is the best.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Stephen P. Lynch ◽  
Karen A. Thole

Turbine blade components in an engine are typically designed with gaps between parts due to manufacturing, assembly, and operational considerations. Coolant is provided to these gaps to limit the ingestion of hot combustion gases. The interaction of the gaps, their leakage flows, and the complex vortical flow at the endwall of a turbine blade can significantly impact endwall heat transfer coefficients and the effectiveness of the leakage flow in providing localized cooling. In particular, a platform gap through the passage, representing the mating interface between adjacent blades in a wheel, has been shown to have a significant effect. Other important turbine blade features present in the engine environment are nonaxisymmetric contouring of the endwall, and an upstream rim seal with a gaspath cavity, which can reduce and increase endwall vortical flow, respectively. To understand the platform gap leakage effect in this environment, measurements of endwall heat transfer, and film cooling effectiveness were performed in a scaled blade cascade with a nonaxisymmetric contour in the passage. A rim seal with a cavity, representing the overlap interface between a stator and rotor, was included upstream of the blades and a nominal purge flowrate of 0.75% of the mainstream was supplied to the rim seal. The results indicated that the endwall heat transfer coefficients increased as the platform gap net leakage increased from 0% to 0.6% of the mainstream flowrate, but net heat flux to the endwall was reduced due to high cooling effectiveness of the leakage flow.


Author(s):  
Stephen P. Lynch ◽  
Karen A. Thole

Turbine blade components in an engine are typically designed with gaps between parts due to manufacturing, assembly, and operational considerations. Coolant is provided to these gaps to limit the ingestion of hot combustion gases. The interaction of the gaps, their leakage flows, and the complex vortical flow at the endwall of a turbine blade can significantly impact endwall heat transfer coefficients and the effectiveness of the leakage flow in providing localized cooling. In particular, a platform gap through the passage, representing the mating interface between adjacent blades in a wheel, has been shown to have a significant effect. Other important turbine blade features present in the engine environment are non-axisymmetric contouring of the endwall, and an upstream rim seal with a gaspath cavity, which can reduce and increase endwall vortical flow, respectively. To understand the platform gap leakage effect in this environment, measurements of endwall heat transfer and film cooling effectiveness were performed in a scaled blade cascade with a non-axisymmetric contour in the passage. A rim seal with a cavity, representing the overlap interface between a stator and rotor, was included upstream of the blades and a nominal purge flowrate of 0.75% of the mainstream was supplied to the rim seal. Results indicated that endwall heat transfer coefficients increased as platform gap net leakage increased from 0% to 0.6% of the mainstream flowrate, but net heat flux to the endwall was reduced due to high cooling effectiveness of the leakage flow.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Author(s):  
Y. W. Kim ◽  
W. Abdel-Messeh ◽  
J. P. Downs ◽  
F. O. Soechting ◽  
G. D. Steuber ◽  
...  

The clearance gap between the stationary outer air seal and blade tips of an axial turbine allows a clearance gap leakage flow to be driven through the gap by the pressure-to-suction side pressure difference. The presence of strong secondary flows on the pressure side of the airfoil tends to deliver air from the hottest regions of the mainstream to the clearance gap. The blade tip region, particularly near the trailing edge, is very difficult to cool adequately with blade internal coolant flow. In this case, film cooling injection directly onto the blade tip region can be used in an attempt to directly reduce the heat transfer rates from the hot gases in the clearance gap to the blade tip. The present paper is intended as a memorial tribute to the late Professor Darryl E. Metzger who has made significant contributions in this particular area over the past decade. A summary of this work is made to present the results of his more recent experimental work that has been performed to investigate the effects of film coolant injection on convection heat transfer to the turbine blade tip for a variety of tip shapes and coolant injection configurations. Experiments are conducted with blade tip models that are stationary relative to the simulated outer air seal based on the result of earlier works that found the leakage flow to be mainly a pressure-driven flow which is related strongly to the airfoil pressure loading distribution and only weakly, if at all, to the relative motion between blade tip and shroud. Both heat transfer and film effectiveness are measured locally over the test surface using a transient thermal liquid crystal test technique with a computer vision data acquisition and reduction system for various combinations of clearance heights, clearance flow Reynolds numbers, and film flow rates with different coolant injection configurations. The present results reveal a strong dependency of film cooling performance on the choice of the coolant supply hole shapes and injection locations for a given tip geometry.


Author(s):  
Vikrant Saxena ◽  
Hasan Nasir ◽  
Srinath V. Ekkad

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility. The linear cascade is made of four blades with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the 2-D blade. The wind tunnel accommodates an 116° turn for the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83 × 105. The upstream wake effect is simulated with a spoked wheel wake generator placed upstream of the cascade. A turbulence grid placed even farther upstream generates the required free-stream turbulence of 4.8%. The center blade has a tip clearance gap of 1.5625% with respect to the blade span. Static pressure measurements are obtained on the blade surface and the shroud. The effect of crosswise trip strips to reduce leakage flow and associated heat transfer is investigated with strips placed along the leakage flow direction, against the leakage flow and along the chord. Cylindrical pin fins and pitch variation of strips over the tip surface are also investigated. Detailed heat transfer measurements are obtained using a steady state HSI-based liquid crystal technique. The effect of periodic unsteady wake effect is also investigated by varying the wake Strouhal number from 0. to 0.2, and to 0.4. Results show that the trip strips placed against the leakage flow produce the lowest heat transfer on the tips compared to all the other cases with a reduction between 10–15% compared to the plain tip. Results also show that the pitch of the strips has a small effect on the overall reduction. Cylindrical pins fins and strips along the leakage flow direction do not decrease the heat transfer coefficients and in some cases enhance the heat transfer coefficients by as much as 20%.


Author(s):  
K. Anto ◽  
S. Xue ◽  
W. F. Ng ◽  
L. J. Zhang ◽  
H. K. Moon

This study focuses on local heat transfer characteristics on the tip and near-tip regions of a turbine blade with a flat tip, tested under transonic conditions in a stationary, 2-D linear cascade with high freestream turbulence. The experiments were conducted at the Virginia Tech transonic blow-down wind tunnel facility. The effects of tip clearance and exit Mach number on heat transfer distribution were investigated on the tip surface using a transient infrared thermography technique. In addition, thin film gages were used to study similar effects in heat transfer on the near-tip regions at 94% height based on engine blade span of the pressure and suction sides. Surface oil flow visualizations on the blade tip region were carried-out to shed some light on the leakage flow structure. Experiments were performed at three exit Mach numbers of 0.7, 0.85, and 1.05 for two different tip clearances of 0.9% and 1.8% based on turbine blade span. The exit Mach numbers tested correspond to exit Reynolds numbers of 7.6 × 105, 9.0 × 105, and 1.1 × 106 based on blade true chord. The tests were performed with a high freestream turbulence intensity of 12% at the cascade inlet. Results at 0.85 exit Mach showed that an increase in the tip gap clearance from 0.9% to 1.8% translates into a 3% increase in the average heat transfer coefficients on the blade tip surface. At 0.9% tip clearance, an increase in exit Mach number from 0.85 to 1.05 led to a 39% increase in average heat transfer on the tip. High heat transfer was observed on the blade tip surface near the leading edge, and an increase in the tip clearance gap and exit Mach number augmented this near-leading edge tip heat transfer. At 94% of engine blade height on the suction side near the tip, a peak in heat transfer was observed in all test cases at s/C = 0.66, due to the onset of a downstream leakage vortex, originating from the pressure side. An increase in both the tip gap and exit Mach number resulted in an increase, followed by a decrease in the near-tip suction side heat transfer. On the near-tip pressure side, a slight increase in heat transfer was observed with increased tip gap and exit Mach number. In general, the suction side heat transfer is greater than the pressure side heat transfer, as a result of the suction side leakage vortices.


Sign in / Sign up

Export Citation Format

Share Document