A Frequency Domain Technique for Characterizing Nonlinearities in a Tire-Vehicle Suspension System

2005 ◽  
Vol 127 (1) ◽  
pp. 61-76 ◽  
Author(s):  
C. Gavin McGee ◽  
Muhammad Haroon ◽  
Douglas E. Adams ◽  
Yiu Wah Luk

Characterization of tire and suspension system nonlinearities in measured data is the first step in developing input-output quarter car models; however, system identification procedures, which require a priori knowledge of all nonlinearities within a system, often receive more attention in the research community. Furthermore, relatively few investigations have focused on nonlinear characterization and identification in the absence of input measurements. A new method for characterizing nonlinearities, in the absence of an input measurement, using transmissibility functions and ordinary coherence functions between response measurement degrees of freedom is discussed here. It is shown that the nonlinear nature of a vehicle system provides information about the nominal linear system when the input is unknown. Nonlinear frequency permutations, which create drops in the ordinary coherence function, serve to characterize the associated nonlinearities. In the absence of input measurements, coherence functions of the response transmissibility between the vehicle spindle and body allow the nonlinearities in the suspension system, but not the tires, to be characterized. Simulation results are discussed and the method is applied to experimental laboratory and operating data to validate the approach.

Author(s):  
O Kavianipour ◽  
M Montazeri-Gh ◽  
M Moazamizadeh

This paper deals with the two degrees of freedom response-type mechanism (2 DOF RTM) designed at Iran University Science and Technology. The applications of the 2 DOF RTM are to measure the longitudinal road profile and assess the vehicle suspension system. When the 2 DOF RTM is connected to a vehicle, it is able to measure the longitudinal road profile and it is capable of assessing the vehicle suspension system while it is perched upon the exciting device. The most important part of the 2 DOF RTM is its hub planned for decreasing the vehicle movement effects on the measurement. Moreover, this paper develops a novel procedure in order to convert the measured profile from the variable speed to the constant speed. To examine the 2 DOF RTM, a profile of a road is measured by the mechanism in the time-domain, and then the highly significant roughness indices such as power spectral density (PSD) of the road unevenness, international roughness index (IRI) and present serviceability index (PSI) are estimated using the measured profile.


2014 ◽  
Vol 984-985 ◽  
pp. 629-633
Author(s):  
Palanisamy Sathishkumar ◽  
Jeyaraj Jancirani ◽  
John Dennie

The present article introduces an approach that combines passive and active elements to improve the ride and passenger comfort. The main aim of vehicle suspension system should isolate the vehicle body from road unevenness for maintaining ride and passenger comfort. The ride and passenger comfort is improved by reducing the car body acceleration caused by the irregular road surface. The vehicle body along with the wheel system is modelled as two degrees of freedom one fourth of car model. The model is tested on road bump with severe peak amplitude excitations. In the conclusion, a comparison of active, semi-active and passive suspension is shown using MATLAB simulations.


2011 ◽  
Vol 55-57 ◽  
pp. 1156-1161
Author(s):  
Jing Yue Wang ◽  
Hao Tian Wang ◽  
Li Min Zheng

Vehicle suspension system with hysteretic nonlinearity has obvious nonlinear characteristics, which directly cause the system to the possibility of existence of bifurcation and chaos. Two degrees of freedom for the 1/4 body suspension model is established and the behavior of the system under road multi-frequency excitations is analyzed. In the paper, it reveals the existence of chaos in the system with the Poincaré map, phase diagram, time history graph, and its chaotic behavior is controlled by nonlinear feedback. Numerical simulation shows the effectiveness and feasibility of the control method with improved ride comfort. The results may supply theoretical bases for the analysis and optimal design of the vehicle suspension system.


2011 ◽  
Vol 141 ◽  
pp. 319-322
Author(s):  
Jun Zhong Xia ◽  
Zong Po Ma ◽  
Shu Min Li ◽  
Xiang Bi An

This paper focuses on the influence of various vehicle suspension systems on ride comfort. A vehicle model with eight degrees of freedom is introduced. With this model, various types of non-linear suspensions such as active and semi-active suspensions are investigated. From this investigation, we draw the conclusion that the active and semi-active suspensions models are beneficial for ride comfort.


2012 ◽  
Vol 466-467 ◽  
pp. 739-743
Author(s):  
Chuan Yin Tang ◽  
Guang Yao Zhao ◽  
Yi Min Zhang ◽  
Yan Ma

In this paper, a four degrees of freedom half body vehicle suspension system is developed .The Radial-Basis Function network algorithm is used to control the suspension system. With the aid of software Matlab/Simulink , the simulation model is achieved. A lot of simulation work is done. Simulation results demonstrate that the proposed active suspension system proves to be effective in vibration reduction of the suspension system.


2013 ◽  
Vol 13 (6) ◽  
pp. 3445-3462 ◽  
Author(s):  
D. Fu ◽  
J. R. Worden ◽  
X. Liu ◽  
S. S. Kulawik ◽  
K. W. Bowman ◽  
...  

Abstract. We present satellite based ozone profile estimates derived by combining radiances measured at thermal infrared (TIR) wavelengths from the Aura Tropospheric Emission Spectrometer (TES) and ultraviolet (UV) wavelengths measured by the Aura Ozone Monitoring Instrument (OMI). The advantage of using these combined wavelengths and instruments for sounding ozone over either instrument alone is improved sensitivity near the surface as well as the capability to consistently resolve the lower troposphere, upper troposphere, and lower stratosphere for scenes with varying geophysical states. For example, the vertical resolution of ozone estimates from either TES or OMI varies strongly by surface albedo and temperature. Typically, TES provides 1.6 degrees of freedom for signal (DOFS) and OMI provides less than 1 DOFS in the troposphere. The combination provides 2 DOFS in the troposphere with approximately 0.4 DOFS for near surface ozone (surface to 700 hPa). We evaluated these new ozone profile estimates with ozonesonde measurements and found that calculated errors for the joint TES and OMI ozone profile estimates are in reasonable agreement with actual errors as derived by the root-mean-square (RMS) difference between the ozonesondes and the joint TES/OMI ozone estimates. We also used a common a priori profile in the retrievals in order to evaluate the capability of different retrieval approaches on capturing near-surface ozone variability. We found that the vertical resolution of the joint TES/OMI ozone profile estimates shows significant improvements on quantifying variations in near-surface ozone with RMS differences of 49.9% and correlation coefficient of R = 0.58 for the TES/OMI near-surface estimates as compared to 67.2% RMS difference and R = 0.33 for TES and 115.8% RMS difference and R = 0.09 for OMI. This comparison removes the impacts of using the climatological a priori in the retrievals. However, it results in artificially large sonde/retrieval differences. The TES/OMI ozone profiles from the production code of joint retrievals will use climatological a priori and therefore will have more realistic ozone estimates than those from using a common a priori volume mixing ratio profile.


2011 ◽  
Vol 138-139 ◽  
pp. 193-198
Author(s):  
Zhong Si Xu ◽  
Tie Xiong Su ◽  
Gang Li ◽  
Kai Wang

Because traditional passive suspension system can’t meet with the requirement of ride in all kinds of roads, elastomer damper was designed and installed on the limiting stopper of the suspension system. Two degrees of freedom model of suspension system with elastomer damper was built and its dynamics simulation was done by use of the software Recurdyn. The simulation results show that the application of elastomer damper can improve the ride of tracked vehicle; the striking force apparently decreases when suspension system has broken down and the probability of suspension system breakdown has been obviously reduced, all of which illustrates the elastomer damper has an obvious dampening effect on the tracked vehicle. Keywords: elastomer damper, tracked vehicle, suspension system, dynamics simulation


Author(s):  
Mohammad Biglarbegian ◽  
William Melek ◽  
Farid Golnaraghi

Semi-active suspension systems allow for adjusting the vehicle shock damping and hence improved suspension performance can be achieved over passive methods. This paper presents the design of a novel fuzzy control structure to concurrently improve ride comfort and road handling of vehicles with semi-active suspension system. A full car model with seven degrees of freedom is adopted that includes the vertical, roll, and pitch motions as well as the vertical motions of each wheel. Four decentralized fuzzy controllers are developed and applied to each individual damper in the vehicle suspension system. Mamdani’s method is applied to infer the damping coefficient output from the fuzzy controller. To evaluate the performance of the proposed controller, numerical analyses were carried out on a real road bump. Moreover, results were compared with well-known and widely used controllers such as Skyhook. It is shown that the proposed fuzzy controller is capable of achieving enhanced ride comfort and road handling over other widely used control methods.


Sign in / Sign up

Export Citation Format

Share Document