Modeling of Wall Pressure Fluctuations Based on Time Mean Flow Field

2004 ◽  
Vol 127 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Yu-Tai Lee ◽  
William K. Blake ◽  
Theodore M. Farabee

Time-mean flow fields and turbulent flow characteristics obtained from solving the Reynolds averaged Navier-Stokes equations with a k‐ε turbulence model are used to predict the frequency spectrum of wall pressure fluctuations. The vertical turbulent velocity is represented by the turbulent kinetic energy contained in the local flow. An anisotropic distribution of the turbulent kinetic energy is implemented based on an equilibrium turbulent shear flow, which assumes flow with a zero streamwise pressure gradient. The spectral correlation model for predicting the wall pressure fluctuation is obtained through a Green’s function formulation and modeling of the streamwise and spanwise wave number spectra. Predictions for equilibrium flow agree well with measurements and demonstrate that when outer-flow and inner-flow activity contribute significantly, an overlap region exists in which the pressure spectrum scales as the inverse of frequency. Predictions of the surface pressure spectrum for flow over a backward-facing step are used to validate the current approach for a nonequilibrium flow.

Author(s):  
Yu-Tai Lee ◽  
Theodore M. Farabee ◽  
William K. Blake

Steady mean flow fields and turbulent flow characteristics obtained from solving the Reynolds Averaged Navier Stokes (RANS) equations with a k-ε isotropic turbulence model are used to predict the frequency spectrum of wall-pressure fluctuations for flow past a backward facing step. The linear source term (LST) of the governing fluctuating-pressure equation is used in deriving the final double integration formula for the fluctuating wall pressure. The integrand of the solution formula includes the mean-flow velocity gradient, modeled turbulence normal fluctuation, Green’s function and the spectral model for the interplane correlation. An anisotropic distribution of the turbulent kinetic energy is implemented using a function named anisotropic factor. This function represents a ratio of the turbulent normal Reynolds stress to the turbulent kinetic energy and is developed based on an equilibrium turbulent flow or flows with zero streamwise pressure gradient. The spectral correlation model for predicting the wall-pressure fluctuations is obtained through modeling of the streamwise and spanwise wavenumber spectra. The nonlinear source term (NST) in the original fluctuating-pressure equation is considered following the conclusion of Kim’s direct numerical simulation (DNS) study of channel flow. Predictions of frequency spectra for the reattachment flow past a backward facing step (BFS) are investigated to verify the validity of the current modeling. Detailed turbulence features and wall-pressure spectra for the flow in the reattachment region of the BFS are predicted and discussed. DNS and experimental data for BFSs are used to develop and validate these calculations. The prediction results based on different modeling characteristics and flow physics agree with the observed turbulence field.


Author(s):  
Yu-Tai Lee ◽  
Theodore M. Farabee ◽  
William K. Blake

Time-mean flow fields and turbulent flow characteristics obtained from solving the Reynolds averaged Navier Stokes (RANS) equations with a k-ε turbulence model are used to predict the frequency spectrum of wall-pressure fluctuations for flow past a backward facing step. The linear source term of the governing fluctuating pressure equation is used in deriving the final double integration formula for the fluctuating wall pressure. The integrand includes the RANS mean-velocity gradient, modeled turbulence normal fluctuation, Green’s function and the spectral model for the interplane correlation. An anisotropic distribution of the turbulent kinetic energy is implemented using a function named anisotropic factor. This function represents a ratio of the turbulent normal Reynolds stress to the turbulent kinetic energy and is developed based on an equilibrium turbulent flow or flows with zero streamwise pressure gradient. The spectral correlation model for predicting the wall-pressure fluctuations is obtained through modeling of the streamwise and spanwise wavenumber spectra. The non-linear source term in the original governing equation is considered following the conclusion of Kim’s direct numerical simulation (DNS) study. Predictions of frequency spectra for the reattachment flow past a backward facing step (BFS) are investigated to verify the validity of the current modeling. Detailed turbulence features and wall-pressure spectra for the flow in the reattachment region of the BFS are predicted and discussed. The prediction results based on different modeling characteristics and flow physics agree with the observed turbulence field.


2017 ◽  
Vol 833 ◽  
pp. 563-598 ◽  
Author(s):  
Hiroyuki Abe

Direct numerical simulations are used to examine the behaviour of wall-pressure fluctuations $p_{w}$ in a flat-plate turbulent boundary layer with large adverse and favourable pressure gradients, involving separation and reattachment. The Reynolds number $Re_{\unicode[STIX]{x1D703}}$ based on momentum thickness is equal to 300, 600 and 900. Particular attention is given to effects of Reynolds number on root-mean-square (r.m.s.) values, frequency/power spectra and instantaneous fields. The possible scaling laws are also examined as compared with the existing direct numerical simulation and experimental data. The r.m.s. value of $p_{w}$ normalized by the local maximum Reynolds shear stress $-\unicode[STIX]{x1D70C}\overline{uv}_{max}$ (Simpson et al. J. Fluid Mech. vol. 177, 1987, pp. 167–186; Na & Moin J. Fluid Mech. vol. 377, 1998b, pp. 347–373) leads to near plateau (i.e. $p_{w\,rms}/-\unicode[STIX]{x1D70C}\overline{uv}_{max}=2.5\sim 3$) in the adverse pressure gradient and separated regions in which the frequency spectra exhibit good collapse at low frequencies. The magnitude of $p_{w\,rms}/-\unicode[STIX]{x1D70C}\overline{uv}_{max}$ is however reduced down to 1.8 near reattachment where good collapse is also obtained with normalization by the local maximum wall-normal Reynolds stress $\unicode[STIX]{x1D70C}\overline{vv}_{max}$. Near reattachment, $p_{w\,rms}/-\unicode[STIX]{x1D70C}\overline{vv}_{max}=1.2$ is attained unambiguously independently of the Reynolds number and pressure gradient. The present magnitude (1.2) is smaller than (1.35) obtained for step-induced separation by Ji & Wang (J. Fluid Mech. vol. 712, 2012, pp. 471–504). The reason for this difference is intrinsically associated with convective nature of a pressure-induced separation bubble near reattachment where the magnitude of $p_{w\,rms}$ depends essentially on the favourable pressure gradient. The resulting mean flow acceleration leads to delay of the r.m.s. peak after reattachment. Attention is also given to structures of $p_{w}$. It is shown that large-scale spanwise rollers of low pressure fluctuations are formed above the bubble, whilst changing to large-scale streamwise elongated structures after reattachment. These large-scale structures become more prominent with increasing $Re_{\unicode[STIX]{x1D703}}$ and affect $p_{w}$ significantly.


2009 ◽  
Vol 638 ◽  
pp. 423-452 ◽  
Author(s):  
EMMANUEL MIGNOT ◽  
D. HURTHER ◽  
E. BARTHELEMY

This study examines the structure of shear stress and turbulent kinetic energy (TKE) flux across the roughness layer of a uniform, fully rough gravel-bed channel flow (ks+ ≫ 100, δ/k = 20) using high-resolution acoustic Doppler velocity profiler measurements. The studied gravel-bed roughness layer exhibits a complex random multi-scale roughness structure in strong contrast with conceptualized k- or d-type roughness in standard rough-wall flows. Within the roughness layer, strong spatial variability of all time-averaged flow quantities are observed affecting up to 40% of the boundary layer height. This variability is attributed to the presence of bed zones with emanating bed protuberances (or gravel clusters) acting as local flow obstacles and bed zones of more homogenous roughness of densely packed gravel elements. Considering the strong spatial mean flow variability across the roughness layer, a spatio-temporal averaging procedure, called double averaging (DA), has been applied to the analysed flow quantities. Three aspects have been addressed: (a) the DA shear stress and DA TKE flux in specific bed zones associated with three classes of velocity profiles as previously proposed in Mignot, Barthélemy & Hurther (J. Fluid Mech., vol. 618, 2009, p. 279), (b) the global and per class DA conditional statistics of shear stress and associated TKE flux and (c) the contribution of large-scale coherent shear stress structures (LC3S) to the TKE flux across the roughness layer. The mean Reynolds and dispersive shear structure show good agreement between the protuberance bed zones associated with the S-shape/accelerated classes and recent results obtained in standard k-type rough-wall flows (Djenidi et al., Exp. Fluids, vol. 44, 2008, p. 37; Pokrajac, McEwan & Nikora, Exp. Fluids, vol. 45, 2008, p. 73). These gravel-bed protuberances act as local flow obstacles inducing a strong turbulent activity in their wake regions. The conditional statistics show that the Reynolds stress contribution is fairly well distributed between sweep and ejection events, with threshold values ranging from H = 0 to H = 8. However, the TKE flux across the roughness layer primarily results from the residual shear stress between ejection and sweep of very high magnitude (H = 10–20) and of small turbulent scale. Although LC3S are seen to penetrated the interfacial roughness layer, their TKE flux contribution is found to be negligible compared to the very energetic small-scale sweep events. These sweeps are dominantly produced in the bed zones of local gravel protuberances where the velocity profiles are inflexional of S-shape type and the mean flow properties are of mixing-layer flow type as previously shown in Mignot et al. (2009).


1999 ◽  
Vol 105 (4) ◽  
pp. 2097-2106 ◽  
Author(s):  
Timothy A. Brungart ◽  
Gerald C. Lauchle ◽  
Steven Deutsch ◽  
Eric T. Riggs

1994 ◽  
Vol 272 ◽  
pp. 383-406 ◽  
Author(s):  
João C. Neves ◽  
Parviz Moin

The effects of convex transverse curvature on the wall pressure fluctuations were studied through direct numerical simulations. The flow regime of interest is characterized by large ratio of the shear-layer thickness to the radius of curvature (γ = δ/a) and by small a+, the radius of curvature in wall units. Two direct numerical simulations of a model problem approximating axial flow boundary layers on long cylinders were performed for γ = 5 (a+ ≈ 43) and γ = 11 (a+ ≈ 21). The space-time characteristics of the wall pressure fluctuations of the plane channel flow simulation of Kim, Moin & Moser (1987), which were studied by Choi & Moin (1990) are used to assess the effects of curvature.As the curvature increases the root-mean-square (r.m.s.) pressure fluctuations decrease and the ratio of the streamwise to spanwise lengthscales of the wall pressure fluctuations increases. Fractional contributions from various layers in the flow to the wall r.m.s. pressure fluctuations are marginally affected by the curvature. Curvature-dependent timescales and lengthscales are identified that collapse the high-frequency range of the wall pressure temporal spectra and the high wave-number range of the wall pressure streamwise spectra of flows with different curvatures. Taylor's hypothesis holds for the wall pressure fluctuations with a lower convection velocity than in the planar case.


Sign in / Sign up

Export Citation Format

Share Document