Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent separation bubble

2017 ◽  
Vol 833 ◽  
pp. 563-598 ◽  
Author(s):  
Hiroyuki Abe

Direct numerical simulations are used to examine the behaviour of wall-pressure fluctuations $p_{w}$ in a flat-plate turbulent boundary layer with large adverse and favourable pressure gradients, involving separation and reattachment. The Reynolds number $Re_{\unicode[STIX]{x1D703}}$ based on momentum thickness is equal to 300, 600 and 900. Particular attention is given to effects of Reynolds number on root-mean-square (r.m.s.) values, frequency/power spectra and instantaneous fields. The possible scaling laws are also examined as compared with the existing direct numerical simulation and experimental data. The r.m.s. value of $p_{w}$ normalized by the local maximum Reynolds shear stress $-\unicode[STIX]{x1D70C}\overline{uv}_{max}$ (Simpson et al. J. Fluid Mech. vol. 177, 1987, pp. 167–186; Na & Moin J. Fluid Mech. vol. 377, 1998b, pp. 347–373) leads to near plateau (i.e. $p_{w\,rms}/-\unicode[STIX]{x1D70C}\overline{uv}_{max}=2.5\sim 3$) in the adverse pressure gradient and separated regions in which the frequency spectra exhibit good collapse at low frequencies. The magnitude of $p_{w\,rms}/-\unicode[STIX]{x1D70C}\overline{uv}_{max}$ is however reduced down to 1.8 near reattachment where good collapse is also obtained with normalization by the local maximum wall-normal Reynolds stress $\unicode[STIX]{x1D70C}\overline{vv}_{max}$. Near reattachment, $p_{w\,rms}/-\unicode[STIX]{x1D70C}\overline{vv}_{max}=1.2$ is attained unambiguously independently of the Reynolds number and pressure gradient. The present magnitude (1.2) is smaller than (1.35) obtained for step-induced separation by Ji & Wang (J. Fluid Mech. vol. 712, 2012, pp. 471–504). The reason for this difference is intrinsically associated with convective nature of a pressure-induced separation bubble near reattachment where the magnitude of $p_{w\,rms}$ depends essentially on the favourable pressure gradient. The resulting mean flow acceleration leads to delay of the r.m.s. peak after reattachment. Attention is also given to structures of $p_{w}$. It is shown that large-scale spanwise rollers of low pressure fluctuations are formed above the bubble, whilst changing to large-scale streamwise elongated structures after reattachment. These large-scale structures become more prominent with increasing $Re_{\unicode[STIX]{x1D703}}$ and affect $p_{w}$ significantly.

1998 ◽  
Vol 377 ◽  
pp. 347-373 ◽  
Author(s):  
Y. NA ◽  
P. MOIN

Space–time correlations and frequency spectra of wall-pressure fluctuations, obtained from direct numerical simulation, are examined to reveal the effects of pressure gradient and separation on the characteristics of wall-pressure fluctuations. In the attached boundary layer subjected to adverse pressure gradient, contours of constant two-point spatial correlation of wall-pressure fluctuations are more elongated in the spanwise direction. Convection velocities of wall-pressure fluctuations as a function of spatial and temporal separations are reduced by the adverse pressure gradient. In the separated turbulent boundary layer, wall-pressure fluctuations are reduced inside the separation bubble, and enhanced downstream of the reattachment region where maximum Reynolds stresses occur. Inside the separation bubble, the frequency spectra of wall-pressure fluctuations normalized by the local maximum Reynolds shear stress correlate well compared to those normalized by free-stream dynamic pressure, indicating that local Reynolds shear stress has more direct influence on the wall-pressure spectra. Contour plots of two-point correlation of wall-pressure fluctuations are highly elongated in the spanwise direction inside the separation bubble, implying the presence of large two-dimensional roller-type structures. The convection velocity determined from the space–time correlation of wall-pressure fluctuations is as low as 0.33U0 (U0 is the maximum inlet velocity) in the separated zone, and increases downstream of reattachment.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Georg Geiser ◽  
Jens Wellner ◽  
Edmund Kügeler ◽  
Anton Weber ◽  
Anselm Moors

A nonlinear full-wheel time-domain simulation of a two-stage low pressure turbine is presented, analyzed, and compared with the available experimental data. Recent improvements to the computational fluid dynamics (CFD) solver TRACE that lead to significantly reduced wall-clock times for such large scale simulations are described in brief. Since the configuration is characterized by significant unsteady turbulence and transition effects, it is well suited for the validation and benchmarking of frequency-domain methods. Transition, flow separation and wall pressure fluctuations on the stator blades of the second stage are analyzed in detail. A strong azimuthal π-periodicity is observed, manifesting in a significantly varying stability of the midspan trailing edge flow with a quasi-steady closed separation bubble on certain blades and highly dynamic partially open separation bubbles with recurring transition and turbulent reattachment on other blades. The energy spectrum of fluctuating wall quantities in that regime shows a high bandwidth and considerable disharmonic content, which is challenging for frequency-domain-based simulation methods.


Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


2015 ◽  
Vol 770 ◽  
pp. 247-272 ◽  
Author(s):  
A. Di Marco ◽  
M. Mancinelli ◽  
R. Camussi

The statistical properties of wall pressure fluctuations generated on a rigid flat plate by a tangential incompressible single stream jet are investigated experimentally. The study is carried out at moderate Reynolds number and for different distances between the nozzle axis and the flat plate. The overall aerodynamic behaviour is described through hot wire anemometer measurements, providing the effect of the plate on the mean and fluctuating velocity. The pressure field acting on the flat plate was measured by cavity-mounted microphones, providing point-wise pressure signals in the stream-wise and span-wise directions. Statistics of the wall pressure fluctuations are determined in terms of time-domain and Fourier-domain quantities and a parametric analysis is conducted in terms of the main geometrical length scales. Possible scaling laws of auto-spectra and coherence functions are presented and implications for theoretical modelling are discussed.


1986 ◽  
Vol 108 (3) ◽  
pp. 308-314 ◽  
Author(s):  
M. A. Z. Hasan ◽  
M. J. Casarella ◽  
E. P. Rood

The flow and wall-pressure field around a wing-body junction has been experimentally investigated in a quiet, low-turbulence wind tunnel. Measurements were made along the centerline in front of the wing and along several spanwise locations. The flow field data indicated that the strong adverse pressure gradient on the upstream centerline causes three-dimensional flow separation at approximately one wing thickness upstream and this induced the formation of the horseshoe root vortex which wrapped around the wing and became deeply embedded within the boundary layer. The wall-pressure fluctuations were measured for their spectral content and the data indicate that the effect of the adverse pressure gradient is to increase the low-frequency content of the wall pressure and to decrease the high-frequency content. The wall pressure data in the separated region, which is dominated by the horseshoe vortex, shows a significant increase in the low-frequency content and this characteristic feature prevails around the corner of the wing. The outer edge of the horseshoe vortex is clearly identified by the locus of maximum values of RMS wall pressure.


Author(s):  
Francesca Magionesi ◽  
Elena Ciappi

For the effective operation of sonar system mounted inside the bulbous of a fast ship, it is important to reduce all the possible noise and vibration sources that cause the dome to vibrate thus radiating noise and interfering with sonar sensor response. In particular, pressure fluctuations induced by the turbulent boundary layer on the surface of the sonar dome represent one of the major sources of self-noise for the on board sensors. Calculation of the structural vibrations and of the noise radiated inside the dome requires as a first step the characterization of the frequency spectra of turbulent boundary layer excitation. Most of the literature related to wall pressure fluctuations is devoted to the study of equilibrium turbulent boundary layers on flat plates in zero pressure gradient (ZPG) flow, for which scaling laws for the power spectral densities and empirical models for the cross spectral densities are well established. The turbulent boundary layer on the bulbous can present several differences with respect to the canonical case because of the presence of hull surface curvatures and of the free water surface that produce pressure gradient variation along the bulbous surface. Moreover, hydrodynamic coincidence effects play a markedly different role in the underwater problem than in the aerodynamic problem. Therefore, an experimental campaign was performed in a towing tank to measure wall pressure fluctuations at different locations along a large scale model of a bulbous and to investigate their spectral characteristics in terms of auto and cross spectral densities. Boundary layer mean flow parameters were obtained with a finite volume code solving the Reynolds Averaged Navier Stokes Equations. The auto spectral densities (ASD) of the measured wall pressure fluctuations were scaled using different combinations of inner and outer flow parameters in order to make ASD independent of the tested conditions i.e. of Reynolds number. The modelled load was used as input for a numerical procedure aimed at evaluating the dynamical response of a section of the bulbous under analysis. The validation of this procedure was experimentally obtained through the measurements of the vibrational response of an elastic section inserted into the bulbous model. Moreover, this comparison indirectly provides additional insights on the physics of wall pressure fluctuations for complex flows.


Sign in / Sign up

Export Citation Format

Share Document