Transient Response of Transversely Isotropic Composite Plates to a Point Source

2005 ◽  
Vol 73 (2) ◽  
pp. 338-341 ◽  
Author(s):  
A. Mahmoud ◽  
A. H. Shah ◽  
S. B. Dong

In this paper, transient three-dimensional response of a transversely isotropic composite plate to a time varying point load is efficiently computed by reducing the elastodynamic equation through integral and coordinate transformations to a series of two-dimensional problems, each associated with a plane wave along a given direction in the plate. Discrete equations of a semi-analytical finite element model are solved for the thickness profile eigendata at a given frequency. Three-dimensional steady state responses in the wave number domain are formed by summing contributions from eigenmodes over propagation directions. The transient response is obtained by a numerical integration of inverse Fourier time transform of these steady state responses. Present results showed good agreement with data reported in the literature and confirmed previously observed phenomena.

1993 ◽  
Vol 115 (4) ◽  
pp. 490-497 ◽  
Author(s):  
An-Chen Lee ◽  
Yuan-Pin Shih ◽  
Yuan Kang

A general transfer matrix method (GTMM) is developed in the present work for analyzing the steady-state responses of rotor-bearing systems with an unbalancing shaft. Specifically, we derived the transfer matrix of shaft segments by considering the state variables of shaft in a continuous system sense to give the most general formulation. The shaft unbalance, axial force, and axial torque are all taken into consideration so that the completeness of transfer matrix method for steady-state analysis of linear rotor-bearing systems is reached. To demonstrate the effectiveness of this approach, a numerical example is presented to estimate the effect of three-dimensional distribution of shaft unbalance on the steady-state responses by GTMM and finite element method (FEM).


1973 ◽  
Vol 40 (4) ◽  
pp. 1040-1044 ◽  
Author(s):  
T. M. Mulcahy

The steady-state responses to a point load moving with constant velocity on an elastic beam which rests on two types of idealized strain-hardening foundations are considered. The one-dimensional elastic-rigid foundation problem is shown to be equivalent to an elastic foundation with two traveling point loads. The opposing loads produce deflections which remain bounded for all load velocities and less than the corresponding elastic foundation results. The deflections of a one-dimensional elastic-perfectly plastic foundation are shown to be bounded for all load velocities. However, deflections significantly larger than the corresponding elastic foundation results occur over a wide range of velocities which are less than the elastic foundation critical velocity.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Dongyan Shi ◽  
Ying Zhang ◽  
Lv Xiuhai

This paper proposes a method for the analysis of acoustic modals and steady-state responses of arbitrary triangular prism and quadrangular prism acoustic cavities based on the three-dimensional improved Fourier series. First, the geometric models of arbitrary triangular prism and quadrangular prism acoustic cavities are established. To facilitate the calculation, the bottom and top surfaces of the irregular cavity are converted into the unit square domain by a coordinate transformation. Internal sound pressure-admissible functions are constructed, and energy expressions are derived after coordinate transformation based on the three-dimensional improved Fourier series. The acoustic modals of arbitrary triangular prism and quadrangular prism acoustic cavities are obtained by the Rayleigh–Ritz technique. At the same time, a point sound source excitation is introduced into the cavity to further study the steady-state responses of prismatic acoustic cavities with different acoustic impedance boundary conditions. The reliability and universality of the method are verified by comparing with the finite element results. The method and results can provide some references and benchmarks for future research and application.


2002 ◽  
Vol 13 (04) ◽  
pp. 205-224 ◽  
Author(s):  
Andrew Dimitrijevic ◽  
Sasha M. John ◽  
Patricia Van Roon ◽  
David W. Purcell ◽  
Julija Adamonis ◽  
...  

Multiple auditory steady-state responses were evoked by eight tonal stimuli (four per ear), with each stimulus simultaneously modulated in both amplitude and frequency. The modulation frequencies varied from 80 to 95 Hz and the carrier frequencies were 500, 1000, 2000, and 4000 Hz. For air conduction, the differences between physiologic thresholds for these mixed-modulation (MM) stimuli and behavioral thresholds for pure tones in 31 adult subjects with a sensorineural hearing impairment and 14 adult subjects with normal hearing were 14 ± 11, 5 ± 9, 5 ± 9, and 9 ± 10 dB (correlation coefficients .85, .94, .95, and .95) for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. Similar results were obtained in subjects with simulated conductive hearing losses. Responses to stimuli presented through a forehead bone conductor showed physiologic-behavioral threshold differences of 22 ± 8, 14 ± 5, 5 ± 8, and 5 ± 10 dB for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. These responses were attenuated by white noise presented concurrently through the bone conductor.


2001 ◽  
Vol 112 (3) ◽  
pp. 555-562 ◽  
Author(s):  
M.Sasha John ◽  
Andrew Dimitrijevic ◽  
Terence W Picton

Sign in / Sign up

Export Citation Format

Share Document