scholarly journals Measurement of Strain in the Left Ventricle during Diastole with cine-MRI and Deformable Image Registration

2005 ◽  
Vol 127 (7) ◽  
pp. 1195 ◽  
Author(s):  
Grant T. Gullberg
Author(s):  
Nikhil S. Phatak ◽  
Steve A. Maas ◽  
Alexander I. Veress ◽  
Nathan A. Pack ◽  
Edward V. R. Di Bella ◽  
...  

2009 ◽  
Vol 13 (2) ◽  
pp. 354-361 ◽  
Author(s):  
Nikhil S. Phatak ◽  
Steve A. Maas ◽  
Alexander I. Veress ◽  
Nathan A. Pack ◽  
Edward V.R. Di Bella ◽  
...  

2020 ◽  
Vol 152 ◽  
pp. S245
Author(s):  
L. Nenoff ◽  
C.O. Ribeiro ◽  
M. Matter ◽  
L. Hafner ◽  
A.C. Knopf ◽  
...  

2021 ◽  
Author(s):  
Guillaume Cazoulat ◽  
Brian M Anderson ◽  
Molly M McCulloch ◽  
Bastien Rigaud ◽  
Eugene J Koay ◽  
...  

2021 ◽  
Vol 88 ◽  
pp. 101849
Author(s):  
Yongbin Zhang ◽  
Lifei Zhang ◽  
Laurence E. Court ◽  
Peter Balter ◽  
Lei Dong ◽  
...  

Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 99 ◽  
Author(s):  
Kleopatra Pirpinia ◽  
Peter A. N. Bosman ◽  
Jan-Jakob Sonke ◽  
Marcel van Herk ◽  
Tanja Alderliesten

Current state-of-the-art medical deformable image registration (DIR) methods optimize a weighted sum of key objectives of interest. Having a pre-determined weight combination that leads to high-quality results for any instance of a specific DIR problem (i.e., a class solution) would facilitate clinical application of DIR. However, such a combination can vary widely for each instance and is currently often manually determined. A multi-objective optimization approach for DIR removes the need for manual tuning, providing a set of high-quality trade-off solutions. Here, we investigate machine learning for a multi-objective class solution, i.e., not a single weight combination, but a set thereof, that, when used on any instance of a specific DIR problem, approximates such a set of trade-off solutions. To this end, we employed a multi-objective evolutionary algorithm to learn sets of weight combinations for three breast DIR problems of increasing difficulty: 10 prone-prone cases, 4 prone-supine cases with limited deformations and 6 prone-supine cases with larger deformations and image artefacts. Clinically-acceptable results were obtained for the first two problems. Therefore, for DIR problems with limited deformations, a multi-objective class solution can be machine learned and used to compute straightforwardly multiple high-quality DIR outcomes, potentially leading to more efficient use of DIR in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document