Study of Cubic Splines and Fourier Series as Interpolation Techniques for Filling in Short Periods of Missing Building Energy Use and Weather Data

2005 ◽  
Vol 128 (2) ◽  
pp. 226-230 ◽  
Author(s):  
Juan-Carlos Baltazar ◽  
David E. Claridge

A study of cubic splines and Fourier series as interpolation techniques for filling in missing hourly data in energy and meteorological time series data sets is presented. The procedure developed in this paper is based on the local patterns of the data around the gaps. Artificial gaps, or “pseudogaps,” created by deleting consecutive data points from the measured data sets, were filled using four variants of the cubic spline technique and 12 variants of the Fourier series technique. The accuracy of these techniques was compared to the accuracy of results obtained using linear interpolation to fill the same pseudogaps. The pseudogaps filled were 1–6 data points in length created in 18 year-long sets of hourly energy use and weather data. More than 1000 pseudogaps of each gap length were created in each of the 18 data sets and filled using each of the 17 techniques evaluated. Use of mean bias error as the selection criterion found that linear interpolation is superior to the cubic spline and Fourier series methodologies for filling gaps of dry bulb and dew point temperature time series data. For hourly building cooling and heating use data, the Fourier series approach with 24 data points before and after each gap and six terms was found to be the most suitable; where there are insufficient data points to apply this approach, simple linear interpolation is recommended.

Solar Energy ◽  
2002 ◽  
Author(s):  
Juan-Carlos Baltazar ◽  
David E. Claridge

A study of cubic splines and Fourier series as interpolation techniques for filling in missing data in energy and meteorological time series is presented. The followed procedure created artificially missing points (pseudo-gaps) in measured data sets and was based on the local behavior of the data set around those pseudo-gaps. Five variants of the cubic spline technique and 12 variants of Fourier series were tested and compared with linear interpolation, for filling in gaps of 1 to 6 hours of data in 20 samples of energy use and weather data. Each of the samples is at least one year in length. The analysis showed that linear interpolation is superior to the spline and Fourier series techniques for filling in 1–6 hour gaps in time series dry bulb and dew point temperature data. For filling 1–6 hour gaps in building cooling and heating use, the Fourier series approach with 24 data points before and after each gap and six constants was found to be the most suitable. In cases where there are insufficient data points for the application of this approach, simple linear interpolation is recommended.


2017 ◽  
Author(s):  
Anthony Szedlak ◽  
Spencer Sims ◽  
Nicholas Smith ◽  
Giovanni Paternostro ◽  
Carlo Piermarocchi

AbstractModern time series gene expression and other omics data sets have enabled unprecedented resolution of the dynamics of cellular processes such as cell cycle and response to pharmaceutical compounds. In anticipation of the proliferation of time series data sets in the near future, we use the Hopfield model, a recurrent neural network based on spin glasses, to model the dynamics of cell cycle in HeLa (human cervical cancer) and S. cerevisiae cells. We study some of the rich dynamical properties of these cyclic Hopfield systems, including the ability of populations of simulated cells to recreate experimental expression data and the effects of noise on the dynamics. Next, we use a genetic algorithm to identify sets of genes which, when selectively inhibited by local external fields representing gene silencing compounds such as kinase inhibitors, disrupt the encoded cell cycle. We find, for example, that inhibiting the set of four kinases BRD4, MAPK1, NEK7, and YES1 in HeLa cells causes simulated cells to accumulate in the M phase. Finally, we suggest possible improvements and extensions to our model.Author SummaryCell cycle – the process in which a parent cell replicates its DNA and divides into two daughter cells – is an upregulated process in many forms of cancer. Identifying gene inhibition targets to regulate cell cycle is important to the development of effective therapies. Although modern high throughput techniques offer unprecedented resolution of the molecular details of biological processes like cell cycle, analyzing the vast quantities of the resulting experimental data and extracting actionable information remains a formidable task. Here, we create a dynamical model of the process of cell cycle using the Hopfield model (a type of recurrent neural network) and gene expression data from human cervical cancer cells and yeast cells. We find that the model recreates the oscillations observed in experimental data. Tuning the level of noise (representing the inherent randomness in gene expression and regulation) to the “edge of chaos” is crucial for the proper behavior of the system. We then use this model to identify potential gene targets for disrupting the process of cell cycle. This method could be applied to other time series data sets and used to predict the effects of untested targeted perturbations.


Author(s):  
Pritpal Singh

Forecasting using fuzzy time series has been applied in several areas including forecasting university enrollments, sales, road accidents, financial forecasting, weather forecasting, etc. Recently, many researchers have paid attention to apply fuzzy time series in time series forecasting problems. In this paper, we present a new model to forecast the enrollments in the University of Alabama and the daily average temperature in Taipei, based on one-factor fuzzy time series. In this model, a new frequency based clustering technique is employed for partitioning the time series data sets into different intervals. For defuzzification function, two new principles are also incorporated in this model. In case of enrollments as well daily temperature forecasting, proposed model exhibits very small error rate.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 51
Author(s):  
Maria Elena Nor ◽  
Norsoraya Azurin Wahir ◽  
G P. Khuneswari ◽  
Mohd Saifullah Rusiman

The presence of outliers is an example of aberrant data that can have huge negative influence on statistical method under the assumption of normality and it affects the estimation. This paper introduces an alternative method as outlier treatment in time series which is interpolation. It compares two interpolation methods using performance indicator. Assuming outlier as a missing value in the data allows the application of the interpolation method to interpolate the missing value, thus comparing the result using the forecast accuracy. The monthly time series data from January 1998 until December 2015 of Malaysia Tourist Arrivals were used to deal with outliers. The results found that the cubic spline interpolation method gave the best result than the linear interpolation and the improved time series data indicated better performance in forecasting rather than the original time series data of Box-Jenkins model. 


2020 ◽  
Vol 496 (1) ◽  
pp. 629-637
Author(s):  
Ce Yu ◽  
Kun Li ◽  
Shanjiang Tang ◽  
Chao Sun ◽  
Bin Ma ◽  
...  

ABSTRACT Time series data of celestial objects are commonly used to study valuable and unexpected objects such as extrasolar planets and supernova in time domain astronomy. Due to the rapid growth of data volume, traditional manual methods are becoming extremely hard and infeasible for continuously analysing accumulated observation data. To meet such demands, we designed and implemented a special tool named AstroCatR that can efficiently and flexibly reconstruct time series data from large-scale astronomical catalogues. AstroCatR can load original catalogue data from Flexible Image Transport System (FITS) files or data bases, match each item to determine which object it belongs to, and finally produce time series data sets. To support the high-performance parallel processing of large-scale data sets, AstroCatR uses the extract-transform-load (ETL) pre-processing module to create sky zone files and balance the workload. The matching module uses the overlapped indexing method and an in-memory reference table to improve accuracy and performance. The output of AstroCatR can be stored in CSV files or be transformed other into formats as needed. Simultaneously, the module-based software architecture ensures the flexibility and scalability of AstroCatR. We evaluated AstroCatR with actual observation data from The three Antarctic Survey Telescopes (AST3). The experiments demonstrate that AstroCatR can efficiently and flexibly reconstruct all time series data by setting relevant parameters and configuration files. Furthermore, the tool is approximately 3× faster than methods using relational data base management systems at matching massive catalogues.


Author(s):  
Sawsan Morkos Gharghory

An enhanced architecture of recurrent neural network based on Long Short-Term Memory (LSTM) is suggested in this paper for predicting the microclimate inside the greenhouse through its time series data. The microclimate inside the greenhouse largely affected by the external weather variations and it has a great impact on the greenhouse crops and its production. Therefore, it is a massive importance to predict the microclimate inside greenhouse as a preceding stage for accurate design of a control system that could fulfill the requirements of suitable environment for the plants and crop managing. The LSTM network is trained and tested by the temperatures and relative humidity data measured inside the greenhouse utilizing the mathematical greenhouse model with the outside weather data over 27 days. To evaluate the prediction accuracy of the suggested LSTM network, different measurements, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), are calculated and compared to those of conventional networks in references. The simulation results of LSTM network for forecasting the temperature and relative humidity inside greenhouse outperform over those of the traditional methods. The prediction results of temperature and humidity inside greenhouse in terms of RMSE approximately are 0.16 and 0.62 and in terms of MAE are 0.11 and 0.4, respectively, for both of them.


Fractals ◽  
2006 ◽  
Vol 14 (03) ◽  
pp. 165-170 ◽  
Author(s):  
ATIN DAS ◽  
PRITHA DAS

In this paper, we attempt musical analysis by measuring fractal dimension (D) of musical pieces played by several musical instruments. We collected solo performances of popular instruments of Western and Eastern origin as samples. We attempted usual spectral analysis of the selected clips to observe peaks of fundamental and harmonics in frequency regime. After appropriate processing, we converted them into time series data sets and computed their fractal dimension. Based on our results, we conclude that instrumental musical sounds may have higher Ds than those computed from vocal performances of different types of Indian songs.


Sign in / Sign up

Export Citation Format

Share Document