Theoretical and Experimental Studies for the Application of Shape Memory Alloys in Civil Engineering

2006 ◽  
Vol 128 (3) ◽  
pp. 302-311 ◽  
Author(s):  
Mauro Dolce ◽  
Donatello Cardone

Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The authors of this paper have been involved, from 1996, in several experimental and theoretical studies of the application of SMAs in civil engineering, for national and international research projects. This paper provides an overview of the main results achieved, consisting of the conceptual design, implementation, and testing of three families of SMA-based devices, namely: (i) special braces for framed structures, (ii) seismic isolation devices for buildings and bridges, and (iii) smart ties for arches and vaults. The main advantage of using SMA-based devices in the seismic protection of structures comes from the double-flag shape of their hysteresis loops, which implies three favorable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness at small displacements. The main advantage of smart ties comes from the thermal behavior of SMA superelastic wires, which is opposite to that of steel rod. This implies a strong reduction of the force changes caused by variations of air temperature.

2014 ◽  
Vol 63 ◽  
pp. 281-293 ◽  
Author(s):  
A. Cladera ◽  
B. Weber ◽  
C. Leinenbach ◽  
C. Czaderski ◽  
M. Shahverdi ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2178 ◽  
Author(s):  
Pouya Haghdoust ◽  
Antonietta Lo Conte ◽  
Simone Cinquemani ◽  
Nora Lecis

This article investigates the efficiency of hybridizing composites with thin layers of martensitic shape memory alloys for improvement of damping. The non-linear damping behaviour of martensitic shape memory alloys is simulated using a modified version of Masing’s rules. The model was implemented in a user subroutine of a finite element code, and validated by a numerical simulation of experimental hysteresis loops at different maximum strain amplitudes. The experimental free decay of hybridized glass fiber reinforced polymer beams was simulated using the finite element model, including the validated model of the investigated materials. The amplitude-dependent damping of the hybrid beams in free decay was reproduced successfully in the numerical analysis and it was proven that the hybridization technique is efficient for improvement of damping.


2013 ◽  
Vol 831 ◽  
pp. 110-114
Author(s):  
S. Alvandi ◽  
M. Ghassemieh

Seismic isolation system is an example of passive control system that effectively improves the performance of structures. This research discusses the seismic performance of a elastomeric base isolation system which provide the combined features of vertical load support, horizontal flexibility and energy absorbing capacity, utilizing shape memory alloys that provides re-centering force and additional damping in the system. Also this paper compares the effect of such alloys with memory effect and/or superelasticity (with pre-straining) in base isolated structure. To provide such comparison, a nonlinear structural model has been developed on some benchmark control problems and some health monitoring evaluation criterias are used. The smart base isolation utilizes the different responses of shape memory alloys at several levels of strain to control the displacements of the rubber bearing and base shear at excitation level. Furthermore the proposed based isolation systems has enhanced performance in terms of response reduction and re-centering capacity.


Sign in / Sign up

Export Citation Format

Share Document