Finite Element Analysis of Thermoelastodynamic Instability Involving Frictional Heating

2006 ◽  
Vol 128 (4) ◽  
pp. 718-724 ◽  
Author(s):  
Yun-Bo Yi

A finite element method is used to solve the problem involving thermoelastodynamic instability (TEDI) in frictional sliding systems. The resulting matrix equation contains a complex eigenvalue that represents the exponential growth rate of temperature, displacement, and velocity fields. Compared to the thermoelastic instability (TEI) in which eigenmodes always decay with time when the sliding speed is below a critical value, numerical results from TEDI have shown that some of the modes always grow in the time domain at any sliding speed. As a result, when the inertial effect is considered, the phenomenon of hot spotting can actually occur at a sliding speed below the critical TEI threshold. The finite element method presented here has obvious advantages over analytical approaches and transient simulations of the problem in that the stabilities of the system can be determined for an arbitrary geometry without extensive computations associated with analytical expressions of the contact condition or numerical iterations in the time domain.




2011 ◽  
Vol 378-379 ◽  
pp. 213-217
Author(s):  
Shang Ming Li

The scaled boundary finite element method (SBFEM) was extended to solve dam-reservoir interaction problems in the time domain and a dynamic stiffness used in the SBFEM of semi-infinite reservoir in the time domain was proposed, which was evaluated by the Bessel function. Based on the dynamic stiffness, transient responses subjected to horizontal ground motions were analyzed through coupling the SBFEM and finite element method (FEM). A dam was modeled by FEM, while the whole fluid in reservoir was modeled by the SBFEM alone or a combination of FEM and SBFEM. Two benchmark examples were considered to check the accuracy of the dynamic stiffness. Results were compared with those from analytical or substructure methods and good agreements were found.



Sign in / Sign up

Export Citation Format

Share Document