Analysis of Interfacial Heat Transfer Coefficient of Green Sand Mold Casting for Aluminum and Tin-Lead Alloys by Using a Lump Capacitance Method

2006 ◽  
Vol 129 (4) ◽  
pp. 595-600 ◽  
Author(s):  
Hsien-Chi Sun ◽  
Long-Sun Chao

During the casting process of green sand mold, air gaps will form between the metal and sand mold. The air gaps will make it difficult to analyze the heat transfer at the mold/metal interface. Generally, an interfacial heat transfer coefficient is employed to evaluate the heat flux transferred across the air gaps. Though the interfacial heat transfer coefficient is highly important, its value is not easily obtained by using the direct experimental or theoretical method. With temperature-measured data, some inverse methods can be used to predict the coefficient. However, the latent heat released and undercooling during the solidification of the molten metal and the moisture of the green sand mold complicate the associated temperature calculations. To overcome this difficulty, a lump capacitance method is proposed in this study to calculate the interfacial heat transfer coefficient for the casting process in green sand mold. Thermalcouples are utilized to measure the temperatures of sand mold and metal. The geometry of casting is cylindrical and the castings are A356 alloy and Sn-20 wt. % Pb alloy. With the predicted interfacial coefficients, the temperature field of the metal was solved numerically. Based on the solidification time, the numerical results are in good agreement with the experimental ones. This verified the feasibility of the proposed method and it can be applied in the future study or design of a casting process.

Author(s):  
A. V. Petrova ◽  
V. E. Bazhenov ◽  
A. V. Koltygin

Prediction of the misrun formation in thin-walled castings of magnesium alloys is a crucial task for foundry. The computer simulation of the casting processes can be used to solve this problem. A reasonable simulation results requires the correct thermal properties of the alloy and the mold over a wide range of temperatures and the value of interfacial heat transfer coefficient between the casting and the mold, and the critical solid fraction at which the alloy flow in the mold is choked off. In this paper we determine the interfacial heat transfer coefficient between the magnesium alloy ML5 (AZ91) and the sand mold with a furan binder. It was done by the comparing the simulated spiral test lengths with the experimental spiral test lengths obtained under the same conditions. Above the liquidus temperature the interfacial heat transfer coefficient IHTCL = 1500 W/(m2 ·K) at pouring temperatures 670 and 740 °С and IHTCL = 1800 W/(m2 ·K) at pouring temperature 810 °С. Below the solidus temperature the interfacial heat transfer coefficient IHTCS = 600 W/(m2 ·K). We also determined the critical solid fraction of ML5 (AZ91) magnesium alloy for the casting made in the furan bonded sand mold (at a cooling rate ~2 K/s) and it was 0.1–0.15. We compared the simulated misruns position and the experimental misrun position in the «Protective cup» casting produced from the ML5 (AZ91) alloy into the sand mold with furan binder. The value of the critical solid fraction was clarified. The castings were made at pouring temperatures 630 and 670 °C, and the critical solid fraction was 0.1 in both cases.


Sign in / Sign up

Export Citation Format

Share Document