green sand
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Mahesh G ◽  
◽  
Valavan D ◽  
Baskar N ◽  
Jayasuthakar S.T. ◽  
...  

Sand casting is one of the best processes to produce a product to satisfy the customer requirements. The prime advantages of choosing the sand casting technique are perfect dimensional geometry, development of pattern is easy, production rate is high, and solidification time is low when compared to other casting techniques. The main purpose of sand casting is to produce a product with better quality in low cost. The properties of the green sand are based on the sand composition and the most important parameters in the preparation of moulding sand are green strength, moisture content and clay content. In this work, the silica oxide is blended in green sand with various compositions for cope box. The various compositions of sand parameters are experimentally investigated by using Response Surface Methodology (RSM). The results of sand parameters are compared with Artificial Neural Network (ANN) analysis. The blending of 9.2% SiO2 with green sand is very suitable for this casting process. The blending of 9.2% SiO2 with green sand is very suitable for this casting process. The effect of SiO2 blending with green sand, the initial raw material is reduced up to 25% of volume without casting defects. The hardness value increased up to 22% and the surface roughness decreased up to 12% by varying the percentage of SiO2 in green sand.


2021 ◽  
Vol 15 (4) ◽  
pp. 8529-8539
Author(s):  
NUR FARAH BAZILAH BINTI WAKHI ANUAR ◽  
M.L. Mohd Khusairi ◽  
R.M. Saad ◽  
S.A. Hassan ◽  
Z. Marjom ◽  
...  

The sand casting process still continues today due to the cost-effectiveness of materials and processes. There is a wide variety of castings related to composition and size, but silica sand is widely available from coastal line mining and has a negative impact on the environment. Moreover, waste from waterjet cutting of non-ferrous and ferrous metals is practically unhazardous and may potentially be used in sand casting mould. The aim of this paper is to optimize the proportion of coal dust, water and bentonite added to the silica sand mixture and the waterjet cutting abrasive waste as a new way of handling waste with the potential to be used in sand casting manufacturing. The method used was L9 orthogonal array optimization and the composition was qualitatively measured using a green compression strength test and a green shear strength test. Factors were evaluated using the analysis of variance (ANOVA) to find the the critical factors while confirmation test was conducted for the optimal material proportion. The study concluded that the ideal ratio for silica sand mixture with waterjet abrasive waste is bentonite-12%, coal dust-5%, and water-7% for green compression strength while bentonite-12%, coal dust-6%, water-7% for green shear strength. With proper selection, the incorporation of waterjet abrasive waste into the green sand mixture is promising to potentially be used in green sand mould casting without undermine the quality of mould.


2021 ◽  
Vol 112 (2) ◽  
pp. 70-76
Author(s):  
D. Abdulamer

Purpose: The useful data and information during the sand compaction process steps should be collected. Direct measurement methods of the sand mould properties during the actual moulding process are not adopted yet. Design/methodology/approach: In this work, a remote control system [1] have been integrated into a new flowability sensor [2]. Findings: To overcome the complexity of the tools and equipment that existed in laboratory, and in foundry. Research limitations/implications: In order to investigate, and control behavior of the moulding process of bentonite-bonded green sand process, the sensors have been equipped with the Bluetooth technology for a wireless transmission of the measured data to computers. Originality/value: This technique contributes to improve of the compaction process based on the non-destructive tests, enhances prediction of the optimum parameter conditions, and reduced the energy, and the compaction time consumed for the green sand moulding process.


Author(s):  
Sampath Boopathi ◽  

The green sand mould casting is an inevitable process to make large size and complex shape of the industrial components. The quality of green sand in mould is a significant phenomenon on casting quality. In this research, the number of ramming, sand thickness mould, and percentage of additives (western bentonite) mixing with sand have been considered to study the effects on permeability and hardness of mould by L27 orthogonal array. Greensand mould experiments have been conducted in the industry to observe the output parameter variations by Taguchi statistical analysis. It was revealed that the maximum permeability and minimum sand hardness have been obtained from the minimum number of ramming, thin sand thickness, and minimum mixing of additives in the sand. The confirmation tests were conducted to validate the predicted control parameter on responses.


Author(s):  
Mahmoud Mohammed Ahmed ◽  
Emad Alkatory ◽  
Atef Hemdan Ali ◽  
Wafaa Mahmoud Abd-Elhamied

The aim of this paper is to improve the quality of superphosphate fertilizer resulting from the use of low quality phosphate rock by the use of additives as Illite clay, The use of Glauconite rock (green sand) and illite rock (green clay) in the abu tartur phosphate's region – new valley and mixing it with low quality phosphate rock (22%) for the production of fertilizers with higher quality and rich with the essential elements for plants (N, K) which aren't exist in low quality phosphate rock individually, an industrial sample test had been done and a mixed fertilizer had been produced (Elayte rock and low quality phosphate (22% ) as 1:1).


Author(s):  
B. Chokkalingam ◽  
M. Priya ◽  
R. Immanual ◽  
B. Varun

The primary objective of this work is to reduce blowhole defect occurring in a cast iron transfer box. The transfer box moulds were produced using green sand moulding process, and cores were made using CO2 process. It was found that the transfer box had a rejection rate as high as 60%, and it was mainly due to a blowhole on the top surface of the casting. The Ishikawa and risk Ishikawa diagrams were used to analyze this major defect. The risk Ishikawa diagram was constructed by assigning weights to the major and sub-causes due to which the defect occurs. Further, the probability of risk and its impact values were employed to compute risk scores for the main causes and also global risk. From the work carried out, it was found that that the moulds and the sands along with melting and pouring parameters were the major causes for this defect while damp chill, pouring delays and high moisture content in sand were identified as the root causes for the blowhole defect. The main root cause for the blowhole defect was pouring delay that eventually causes dampness in the chill pieces kept inside the moulds. The remedial measures of keeping the moisture content of the sand within 3.5% and pouring the moulds in the shift II within half an hour after closing them were implemented to eliminate it.


Sign in / Sign up

Export Citation Format

Share Document