Interaction of Tip Clearance Flow and Three-Dimensional Separations in Axial Compressors

2006 ◽  
Vol 129 (4) ◽  
pp. 679-685 ◽  
Author(s):  
Semiu A. Gbadebo ◽  
Nicholas A. Cumpsty ◽  
Tom P. Hynes

This paper considers the interaction of tip clearance flow with three-dimensional (3D) separations in the corner region of a compressor cascade. Three-dimensional numerical computations were carried out using ten levels of tip clearance, ranging from zero to 2.18% of blade chord. The 3D separations on the blade suction surface were largely removed by the clearance flow for clearance about 0.58% of chord. For this cascade, experimental results at zero and 1.7% chord tip clearance were used to assess the validity of the numerical predictions. The removal mechanism was associated with the suppression of the leading edge horseshoe vortex and the interaction of tip clearance flow with the endwall boundary layer, which develops into a secondary flow as it is driven towards the blade suction surface. Such interaction leads to the formation of a new 3D separation line on the endwall. The separation line forms the base of a separated stream surface which rolls up into the clearance vortex.

Author(s):  
Semiu A. Gbadebo ◽  
Nicholas A. Cumpsty ◽  
Tom P. Hynes

This paper considers the interaction of tip clearance flow with three-dimensional (3D) separations in the corner region of a compressor cascade. Three-dimensional numerical computations were carried out using ten levels of tip clearance, ranging from zero to 2.18% of blade chord. The 3D separations on the blade suction surface were largely removed by the clearance flow for clearance about 0.58% of chord. For this cascade, experimental results at zero and 1.7% chord tip clearance were used to assess the validity of the numerical predictions. The removal mechanism was associated with the suppression of the leading edge horseshoe vortex and the interaction of tip clearance flow with the endwall boundary layer, which develops into a secondary flow as it is drifted towards the blade suction surface. Such interaction leads to the formation of a new 3D separation line on the endwall. The separation line forms the base of a separated stream surface which rolls up into the clearance vortex.


1993 ◽  
Vol 115 (3) ◽  
pp. 444-450 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

An analysis of the experimental data of a linear compressor cascade with tip clearance is presented with special attention to the development of the tip leakage vortex. A method for determining the tip vortex core size, center position, and vorticity or circulation from the measured data is proposed, based on the assumption of a circular tip vortex core. It is observed that the axial velocity profile passing through the tip vortex center is wavelike. The vorticity of the tip vortex increases rapidly near the leading edge and reaches its highest values at a short distance downstream, from which it gradually decreases. In the whole evolution, its size is growing and its center is moving away from both the suction surface and the endwall, approximately in a linear way.


Author(s):  
Shun Kang ◽  
Ch. Hirsch

An analysis of the experimental data of a linear compressor cascade with tip clearance is presented with special attention to the development of the tip leakage vortex. A method for determining the tip vortex core size, centre position and vorticity or circulation from the measured data is proposed, based on the assumption of a circular tip vortex core. It is observed that the axial velocity profile passing through the tip vortex centre is wake-like. The vorticity of the tip vortex increases rapidly near the leading edge and reaches its highest values at a short distance downstream, from which it gradually decreases. In the whole evolution, its size is growing and its centre is moving away from both the suction surface and the endwall, approximately in a linear way.


1989 ◽  
Vol 111 (3) ◽  
pp. 250-256 ◽  
Author(s):  
M. Inoue ◽  
M. Kuroumaru

Ensemble-averaged and phase-locked flow patterns in various tip clearances of two axial compressor rotors were obtained by aperiodic multisampling technique with a hot wire in the clearance and with a high-response pressure sensor on the casing wall. A leakage flow region distinct from a throughflow region exists at every clearance. In the case of a small tip clearance, the leakage jet flow interacts violently with the throughflow near the leading edge, and a rolling-up leakage vortex decays downstream. As the clearance increases, a stronger leakage vortex comes into existence at a more downstream location, and a reverse flow due to the vortex grows noticeably. A scraping vortex is recognized at the pressure side near the trailing edge only for the small clearance. A horseshoe vortex appears in the upstream half of the through flow region for every tip clearance. The solidity does not affect the flow pattern substantially except for the interaction of the leakage vortex with the adjacent blade and wake.


Author(s):  
Shun Kang ◽  
Ch. Hirsch

Experimental results from a study of the 3-D flow in a linear compressor cascade with stationary endwall at design conditions are presented for tip clearance levels of 1.0, 2.0 and 3.3 percent of chord, compared with the no clearance case. In addition to five-hole probe measurements, extensive surface flow visualizations are conducted. It is observed that for the smaller clearance cases a weak horseshoe vortex forms in the front of the blade leading edge. At all the tip gap cases, a multiple tip vortex structure with three discrete vortices around the midchord is found. The tip leakage vortex core is well defined after the midchord but does not cover a significantly great area in traverse planes. The presence of the tip leakage vortex results in the passage vortex moving close to the endwall and to the suction side.


Author(s):  
Horst Saathoff ◽  
Udo Stark

The paper describes an investigation of the overtip end-wall flow in a single–stage axial–flow low–speed compressor utilizing an oil flow technique and a periodic multisampling pressure measurement technique. Representative oil flow pictures and ensemble averaged casingwall pressure distributions with standard deviations — supplemented by selected endwall oil flow pictures from a corresponding 2D compressor cascade — are shown and carefully analysed. The results enable the key features of the overtip endwall flow to be identified and changes with flow rate — or inlet angle — to be determined.


Author(s):  
A. Doukelis ◽  
K. Mathioudakis ◽  
K. Papailiou

The performance of a high speed annular compressor cascade for different clearance gap sizes, with stationary or rotating hub wall is investigated. Five hole probe measurements, conducted at the inlet and outlet of the cascade, are used to derive blade performance characteristics, in the form of loss and turning distributions. Characteristics are presented in the form of circumferentially mass averaged profiles, while distributions on the exit plane provide information useful to interpret the performance of the blading. Static pressure distributions on the surface of the blades as well as inside the tip clearance gap have also been measured. A set of four clearance gap sizes, in addition to zero clearance data for the stationary wall, gives the possibility to observe the dependence of performance characteristics on clearance size, and establish the influence of rotating the hub. Overall performance is related to features of the tip clearance flow. Increasing the clearance size is found to increase losses in the clearance region, while it affects the flow in the entire passage. Wall rotation is found to improve the performance of the cascade.


Sign in / Sign up

Export Citation Format

Share Document