On a Spring-Network Model and Effective Elastic Moduli of Granular Materials

1999 ◽  
Vol 66 (1) ◽  
pp. 172-180 ◽  
Author(s):  
K. Alzebdeh ◽  
M. Ostoja-Starzewaski

Two challenges in mechanics of granular media are taken up in this paper: (i) development of adequate numerical discrete element models of topologically disordered granular assemblies, and (ii) calculation of macroscopic elastic moduli of such materials using effective medium theories. Consideration of the first one leads to an adaptation of a spring-network (Kirkwood) model of solid-state physics to disordered systems, which is developed in the context of planar Delaunay networks. The model employs two linear springs: a normal one along an edge connecting two neighboring vertices (grain centers) which accounts for normal interactions between the grains, as well as an angular one which accounts for angle changes between two edges incident onto the same vertex; edges remain straight and grain rotations do not appear. This model is then used to predict elastic moduli of two-phase granular materials—random mixtures of soft and stiff grains —for high coordination numbers. It is found here that an effective Poisson’s ratio, νeff, of such a mixture is a convex function of the volume fraction, so that νeff may become negative when the individual Poisson’s ratios of both phases are both positive. Additionally, the usefulness of three effective medium theories—perfect disks, symmetric ellipses, and asymmetric ellipses—is tested.

1996 ◽  
Vol 426 ◽  
Author(s):  
Woo Yeong Cho ◽  
Koeng Su Lim ◽  
Hyun-Mo Cho

AbstractThe optical properties of microcrystalline silicon (µc-Si) were estimated using the EMA (Effective Medium Approximation) method. This modeling was based on two-phase mixture, amorphous silicon (a-Si) and crystalline silicon (c-Si) with volume fractions of fa and fc respectively. From this modeling, it could be possible to understand thatµc-Si has lower light absorption characteristics than a-Si over all solar spectrum by considering hydrogen involvement in embedded a-Si part of iic-Si and crystalline volume fraction. Also, it is proposed that p-type pe- Si is superior to n-type tic-Si because of its high optical gap of Eo4 and its low absorption coefficient spectrum shape.


1985 ◽  
Vol 57 (6) ◽  
pp. 1990-1996 ◽  
Author(s):  
A. N. Norris ◽  
P. Sheng ◽  
A. J. Callegari

Author(s):  
N. Favrie ◽  
S. Gavrilyuk

An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model.


2010 ◽  
Vol 638-642 ◽  
pp. 2274-2278 ◽  
Author(s):  
Yasuhiro Kuno ◽  
Yasuo Nakane ◽  
Takao Kozakai ◽  
Minoru Doi ◽  
Junji Yamanaka ◽  
...  

When Fe-10.3mol%Ni-14.3mol%Al alloy is heated at 1173 K for 8.64104 s, a number of B2 precipitates are dispersed in the A2 matrix. When the two-phase microstructure of A2+B2 is aged at 973 K, the phase-separation of B2 precipitate particles takes place to form a new A2 phase in each B2 particle. In the course of further ageing at 973 K, the new A2 phase grows but decreases in number, and finally only one A2 particle is left in the individual B2 particles. The appearance of new A2 phase in each B2 precipitate is due to the difference in the volume fraction of A2 phase that should exist in A2+B2 two-phase system depending on the heating temperature: i.e., the phase-separation of B2 precipitates starts with the aid of chemical free energy.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Anirban Chaudhuri ◽  
Curtis F. Osterhoudt ◽  
Dipen N. Sinha

This paper presents a method of determining the volume fractions of two liquid components in a two-phase flow by measuring the speed of sound through the composite fluid and the instantaneous temperature. Two separate algorithms are developed, based on earlier modeling work by Urick (Urick, 1947, “A Sound Velocity Method for Determining the Compressibility of Finely Divided Substances,” J. Appl. Phys., 18(11), pp. 983–987) and Kuster and Toksöz (Kuster and Toksöz, 1974, “Velocity and Attenuation of Seismic Waves in Two-Phase Media: Part 1. Theoretical Formulations,” Geophysics, 39(5), pp. 587–606). The main difference between these two models is the representation of the composite density as a function of the individual densities; the former uses a linear rule-of-mixtures approach, while the latter uses a nonlinear fractional formulation. Both approaches lead to a quadratic equation, the root of which yields the volume fraction (φ) of one component, subject to the condition 0≤φ≤1. We present results of a study with mixtures of crude oil and process water, and a comparison of our results with a Coriolis meter. The liquid densities and sound speeds are calibrated at various temperatures for each fluid component, and the coefficients are used in the final algorithm. Numerical studies of sensitivity of the calculated volume fraction to temperature changes are also presented.


1988 ◽  
Vol 133 ◽  
Author(s):  
M. G. Mendiratta ◽  
D. M. Dimiduk

ABSTRACTIn the Nb-Si system, it is possible to produce in-situ composites consisting of a brittle Nb5Si3 intermetallic matrix and ductile Nb particles. The two phases are thermochemically stable up to ∼ 1500∼C and are amenable to wide microstructural variations including morphology, volume fraction, and the size of the individual microconstituents. This paper presents microstructures and phase transformations in these composites as a function of composition and heat treatments and bend properties from room-temperature to 1400°C.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. D561-D571 ◽  
Author(s):  
Ratnanabha Sain ◽  
Tapan Mukerji ◽  
Gary Mavko

We emphasize the existence of stress-dependent microscopic heterogeneities in granular media and their influence on macroscopic property estimation using numerical simulations. Although numerical simulations based on contact mechanics successfully reproduce experimental stress-dependent acoustic response of granular media, most contact-mechanics-based effective medium theories (EMTs) fail. We have determined that the main reason for this discrepancy is an inadequate theoretical treatment of micro-heterogeneities in structure, force, and stress. Under infinitesimal perturbations used for estimating elastic moduli, microheterogeneities lead to displacements or relaxations — typically ignored in EMT. These infinitesimal granular relaxations are necessary to comply with detailed force balance, but do not involve grain slip and hence do not depend on friction. Furthermore, we have found that these relaxations primarily depend on the “amount” of heterogeneity, which to a first order are dependent on stress only and are independent of mineralogy. In the absence of an effective medium framework to estimate such relaxation corrections, we have provided simulation-based corrections to account for the impact of heterogeneity on elastic moduli calculations in EMT.


2020 ◽  
Vol 4 (1) ◽  
pp. 32
Author(s):  
Chris R. Bowen ◽  
Kevin Robinson ◽  
Jianhui Tian ◽  
Meijie Zhang ◽  
Vincent A. Coveney ◽  
...  

The properties of thermal networks are examined to understand the effective thermal conductivity of heterogeneous two-phase composite materials and systems. At conditions of high contrast in thermal conductivity of the individual phases (k1 and k2), where k1 << k2 or k1 >> k2, the effective thermal conductivity of individual networks of the same composition was seen to be highly sensitive to the distribution of the phases and the presence of percolation paths across the network. However, when the contrast in thermal conductivities of the two phases was modest (k1/k2 ~ 10−2 to 102), the thermal networks were observed to exhibit an emergent response with a low variability in the effective thermal conductivity of mixtures of the same composition. A logarithmic mixing rule is presented to predict the network response in the low variability region. Excellent agreement between the model, mixing rule and experimental data is observed for a range two-phase porous and granular media. The modelling approach provides new insights into the design of multi-phase composites for thermal management applications and the interpretation or prediction of their heat transfer properties.


Sign in / Sign up

Export Citation Format

Share Document