Effect of Wall Conduction on Natural Convection in an Enclosure With a Centered Heat Source

1995 ◽  
Vol 117 (4) ◽  
pp. 301-306 ◽  
Author(s):  
Yi-Hsiang Huang ◽  
Suresh K. Aggarwal

This study presents a numerical investigation of the effects of wall conduction on laminar natural convection heat transfer in a two-dimensional rectangular enclosure. The heat transfer is driven by a constant-temperature heat source in the center of the enclosure. The time dependent governing equations in the primitive form are solved numerically by the use of a finite-volume method. The numerical algorithm is first validated by comparing our predictions with those of Kim and Viskanta for a square cavity surrounded by four conducting walls. A parametric study is then conducted to examine the effects of wall conduction on the natural convection heat transfer. The parameters include the Rayleigh number, wall thickness, wall thermal conductivity ratio and diffusivity ratio. In addition, the effects of varying thermal boundary conditions on the outside walls are reported. Results indicate that the qualitative features of natural convection heat transfer in the laminar range are not significantly altered by the inclusion of wall conduction. However, the quantitative results may be significantly modified by the wall conductance. In general, the wall conduction reduces the rate of heat dissipation from the enclosure. The average Nusselt number decreases as the wall thickness ratio is increased and/or the wall thermal conductivity is reduced. Results also indicate that it may be possible to define an effective Rayleigh number that includes the effects of wall thickness and conductivity.

1999 ◽  
Author(s):  
Y. Yamaguchi ◽  
Y. Asako

Abstract Three-dimensional natural convection heat transfer characteristics in a vertical air layer partitioned into cubical enclosures of finite wall thermal conductivity and finite thickness were obtained numerically. The outer surfaces of the enclosure are prescribed at different temperatures. These walls are often encountered in applications such as door panels and thermal insulation boards. The analyses were performed for finite wall thickness and conductivity, for Ra = 104 and 105 and for a wide range of wall thickness and thermal. The results were presented in form of temperature distributions and contour plots of Num and Qwall/Qtotal. From comparison of the results with ideal boundary conditions, a correlation for heat transfer for partitioned walls was developed. It was shown from the results that the ratio of heat transfer into the partition walls to the total heat transfer from the hot wall is a function of the product of wall thermal conductivity and thickness.


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Yanwei Hu ◽  
Yurong He ◽  
Shufu Wang ◽  
Qizhi Wang ◽  
H. Inaki Schlaberg

An experimental and numerical investigation on natural convection heat transfer of TiO2–water nanofluids in a square enclosure was carried out for the present work. TiO2–water nanofluids with different nanoparticle mass fractions were prepared for the experiment and physical properties of the nanofluids including thermal conductivity and viscosity were measured. Results show that both thermal conductivity and viscosity increase when increasing the mass fraction of TiO2 nanoparticles. In addition, the thermal conductivity of nanofluids increases, while the viscosity of nanofluids decreases with increasing the temperature. Nusselt numbers under different Rayleigh numbers were obtained from experimental data. Experimental results show that natural convection heat transfer of nanofluids is no better than water and even worse when the Rayleigh number is low. Numerical studies are carried out by a Lattice Boltzmann model (LBM) coupling the density and the temperature distribution functions to simulate the convection heat transfer in the enclosure. The experimental and numerical results are compared with each other finding a good match in this investigation, and the results indicate that natural convection heat transfer of TiO2–water nanofluids is more sensitive to viscosity than to thermal conductivity.


2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


2017 ◽  
Vol 27 (10) ◽  
pp. 2385-2399 ◽  
Author(s):  
Kamel Milani Shirvan ◽  
Mojtaba Mamourian ◽  
Soroush Mirzakhanlari ◽  
A.B. Rahimi ◽  
R. Ellahi

Purpose The purpose of this paper is to present the numerical solutions of surface radiation and combined natural convection heat transfer in a solar cavity receiver. The paper aims to discuss sundry issues that take place in the said model. Design/methodology/approach The numerical solutions are developed by means of second-order upwind scheme using the SIMPLE algorithm. Findings The effects of physical factors such as Rayleigh number (104 ≤ Ra ≤ 106), inclination angels of insulated walls (0º ≤ θ ≤ 10º) and the wall surface emissivity (0 ≤ ε ≤ 1) on natural convection-surface radiation heat transfer rate are analyzed. Impact of sundry parameters on flow quantities are discussed and displayed via graphs and tables. Stream lines and isothermal lines have also been drawn in the region of cavity. The numerical results reveal that increasing the Rayleigh number, wall surface emissivity and inclination angels of insulated walls in an open cavity enhances the mean total Nusselt number. The variations of the surface radiation and natural convection heat transfer mean Nusselt numbers are very small to the inclination angle of θ, while a significant change is noted for the case of Rayleigh number and emissivity. Originality/value To the best of authors’ knowledge, this model is reported for the first time.


Author(s):  
Titan C. Paul ◽  
A. K. M. M. Morshed ◽  
Elise B. Fox ◽  
Ann E. Visser ◽  
Nicholas J. Bridges ◽  
...  

A systematic natural convection heat transfer experiment has been carried out of nanoparticle enhanced ionic liquids (NEILs) in rectangular enclosures (lengthxwidthxheight, 50×50×50mm and 50×50×75mm) heated from below condition. In the present experiment NEIL was made of N-butyl-N-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl} imide, ([C4mpyrr][NTf2]) ionic liquid with 0.5% (weight%) Al2O3 nanoparticles. In addition to characterize the natural convection behavior of NEIL, thermophysical properties such as thermal conductivity, heat capacity, and viscosity were also measured. The result shows that the thermal conductivity of NEIL enhanced ∼3% from the base ionic liquid (IL), heat capacity enhanced ∼12% over the measured temperature range. The natural convection experimental result shows consistent for two different enclosures based on the degrading natural convection heat transfer rate over the measured Rayleigh number range. Possible reasons of the degradation of natural convection heat transfer may be the relative change of the thermophysical properties of NEIL compare to the base ionic liquid.


Sign in / Sign up

Export Citation Format

Share Document