An Experimental and Analytical Study of Single-Phase Liquid Flow in a Horizontal Well

1997 ◽  
Vol 119 (1) ◽  
pp. 20-25 ◽  
Author(s):  
H. Yuan ◽  
C. Sarica ◽  
S. Miska ◽  
J. P. Brill

A new test facility was designed and constructed to simulate flow in a horizontal well with a single perforation. A total of 635 tests were conducted with Reynolds numbers ranging from 5000 to 60,000 with influx to main rate ratios ranging from 1/5 to 1/100, and also for the no-influx case. The flow behavior in a single-perforation new friction expression for a single-perforation horizontal well was developed. A new simple correlation for the horizontal well friction factor was developed by applying experimental data to the general friction factor expression. The new friction factor correlation and experimental data were compared with the Asheim et al. (1992) data and model, and showed that the new correlation performed better than the Asheim et al. (1992) model.

2000 ◽  
Vol 123 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Weipeng Jiang ◽  
Cem Sarica ◽  
Erdal Ozkan ◽  
Mohan Kelkar

The fluids in horizontal wells can exhibit complicated flow behaviors, in part due to interaction between the main flow and the influxes along the wellbore, and due to completion geometries. An existing small-scale test facility at Tulsa University Fluid Flow Projects (TUFFP) was used to simulate the flow in a horizontal well completed with either circular perforations or slotted liners. Single phase liquid flow experiments were conducted with Reynolds numbers ranging approximately from 5000 to 65,000 and influx to main flow rate ratios ranging from 1/50 to 1/1000. For both the perforation and slot cases, three different completion densities and three different completion phasings are considered. Based on the experimental data, new friction factor correlations for horizontal well with multiple perforation completion or multiple slots completion were developed using the principles of conservation of mass and momentum.


Author(s):  
Dara W. Childs ◽  
Bassem Kheireddin ◽  
Stephen Phillips ◽  
Thanesh Deva Asirvatham

A flat-plate tester was used to measure the friction factor behavior for a hole-pattern roughened surface apposed to a smooth surface. The tests were executed to characterize the friction factor behavior of annular seals that use a roughened-surface stator and a smooth rotor. Friction factors were obtained from measurements of the mass flow rate and static pressure measurements along the smooth and roughened surfaces. In addition, dynamic pressure measurements were made at four axial locations at the bottom of individual holes and at facing locations in the smooth plate. The test facility is described, and a procedure for determining the friction factor is reviewed. Three clearances were investigated: 0.635 mm, 0.381 mm, and 0.254 mm. Tests were conducted with air at three different inlet pressures (84 bars, 70 bars, and 55 bars), producing a Reynolds numbers range from 50,000 to 700,000. Three surface configurations were tested, including smooth-on-smooth, smooth-on-hole, and hole-on-hole. The hole-pattern plates are identical with the exception of the hole depth. For the smooth-on-smooth and smooth-on-hole configurations, the friction factor remains largely constant or increases slightly with increasing Reynolds numbers. The friction factor increases as the clearance between the plates increases. The test program was initiated to investigate a friction-factor jump phenomenon cited by Ha et al. (1992, “Friction-Factor Characteristics for Narrow-Channels With Honeycomb Surfaces,” Trans. ASME, J. Tribol., 114, pp. 714–721) in test results from a flat-plate tester where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. They tested apposed honeycomb surfaces. For the present tests, the phenomenon was also observed for tests of apposed roughened surfaces but was not observed for smooth-on-smooth or smooth-on-rough configurations. When the phenomenon was observed, dynamic pressure measurements showed a peak-pressure oscillation at the calculated Helmholtz frequency of the holes.


2021 ◽  
pp. 146808742110170
Author(s):  
Eric Gingrich ◽  
Michael Tess ◽  
Vamshi Korivi ◽  
Jaal Ghandhi

A new temporally resolved spatially averaged heat transfer correlation was developed using the local piston heat flux data presented in the first part of this paper. The new correlation extends previous correlations that relate the Nusselt and Reynolds numbers through a power law by adding a dimensionless chemical energy release rate term. The new term, which arises from dimensional analysis, should enable similitude for diesel engines. Additionally, the characteristic velocity used in the Reynolds number was modified to include the integrated fuel mass injection rate. The new correlation was calibrated to the experimental data by minimizing the least squares error, and compared to existing correlations from the literature. On average, the new formulation was found to match the experimental data better than the existing models even when the existing models’ constants were adjusted to best fit the measured data.


Author(s):  
Md. Islam ◽  
L. Guangda ◽  
S. Ainane ◽  
S. Bojanampati

Abstract In this research, heat transfer and pressure drop from a tube with vortex generators (VGs) insert are numerically investigated. The effects of heights, attack angles of VGs inside a tube on heat transfer and flow behavior are investigated. CFD simulations, with and without VGs insert, are done for an air flow range (Reynolds numbers 6000 to 33000) and for a constant heat flux on the tube model surface. Four VGs are fitted in a circular pattern on the inner surface of the tube. We studied the characteristics of the delta winglet VGs for different attack angles and blockage ratios. The Nusselt number and friction factor results show the influence of the VGs insert on heat transfer and frictional factor. The maximum Nusselt number increment (Nu/Nu0) was achieved to be 1.75 while the maximum friction factor increment (f/f0) was 3.21. In order to understand the flow behavior and different vortices, path lines released by the VGs surface and details of the vortices are also studied.


1974 ◽  
Vol 96 (3) ◽  
pp. 443-448 ◽  
Author(s):  
R. A. Meric ◽  
N. A. Macken

The performance characteristics of viscoseals are analyzed including the effects of convective inertia and the groove side wall. For the geometries studied, the present theory correlates the experimental data for the sealing and friction coefficient better than previous theories. The sealing coefficient is found to be dependent on the Reynolds number and groove width-to-depth aspect ratio. Leakage and critical Reynolds numbers are also discussed.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Mason Childs ◽  
Robert Muyshondt ◽  
Rodolfo Vaghetto ◽  
Duy Thien Nguyen ◽  
Yassin Hassan

Abstract The thermal-hydraulic behavior of the flow in rod bundles has motivated numerous experimental and computational investigations. Previous studies have identified potential for accumulation of debris within the small subchannels of typical wire-wrapped assemblies with subsequent total or partial blockage of subchannel coolant flow. A test campaign was conducted to study the effects of localized blockages on the bundle averaged friction factor of a tightly packed wire-wrapped rod bundle. Blockages were installed within the bundle, and fluid pressure drop was measured across one wire pitch for a Reynolds number range of 500–17,200. The Darcy–Weisbach friction factor of the perturbed rod bundle geometry was compared with that of the unblocked bundle, as well as with the predictions of a well-established friction factor correlation. Differing effects based on blockage size and location for various flow regimes were studied. A number of conclusions can be made about the effects of the blockages on the friction factor, such as an increasing effect of the blockage on friction factor with an increase in Reynolds number, a change in flow behavior in the turbulent transition flow regime near Reynolds number 3000, differences in effect on friction factor for different types of subchannel blockage, and a nonlinear trend in friction factor variation with flow area impeded for edge subchannels. To this end, all data and quantified uncertainty produced in this study are made available for comparison and validation of advanced computational tools.


Author(s):  
Mason Childs ◽  
Robert Muyshondt ◽  
Giacomo Busco ◽  
Mustafa Alper Yildiz ◽  
Rodolfo Vaghetto ◽  
...  

Abstract A test campaign has been conducted to study the effects of localized blockages on the friction factor of a 61-pin wire-wrapped bundle replica. Blockages of selected sizes and locations within the bundle have been installed, and fluid pressure drop was measured across one wire pitch. The friction factor was compared with the unblocked bundle friction factor, and with the predictions of a well-established friction factor correlation. A computational fluid dynamics model of the experimental bundle was prepared, and simulations were compared with experimental results with the ultimate goal to complement the experimental activity with validated simulation data. The unique sets of experimental data, complemented with simulation results, provide a quantification of the increase of the bundle friction factor produced by the blockages, and the different expected effects based on blockage size and location for various flow regimes.


Author(s):  
Dara W. Childs ◽  
Bassem Kheireddin ◽  
Stephen Phillips

A flat-plate tester was used to measure the friction-factor behavior for a hole-pattern-roughened surface apposed to a smooth surface. The tests were executed to characterize the friction-factor behavior of annular seals that use a roughened-surface stator and a smooth rotor. Friction factors were obtained from measurements of the mass flow rate and static pressure measurements along the smooth and roughened surfaces. In addition, dynamic pressure measurements were made at four axial locations at the bottom of individual holes and at facing locations in the smooth plate. The test facility is described, and a procedure for determining the friction factor is reviewed. Three clearances were investigated: 0.635, 0.381, and 0.254 mm. Tests were conducted with air at three different inlet pressures (84, 70, and 55 bars), producing a Reynolds numbers range from 50,000 to 700,000. Three surface configurations were tested including smooth-on-smooth, smooth-on-hole, and hole-on-hole. The hole-pattern plates are identical with the exception of the hole depth. For the smooth-on-smooth and smooth-on-hole configurations, the friction factor remains largely constant or increases slightly with increasing Reynolds numbers. The friction factor increases as the clearance between the plates increases. The test program was initiated to investigate a “friction-factor jump” phenomenon cited by Ha et al. in 1992 in test results from a flat-plate tester where, at elevated values of Reynolds numbers, the friction-factor began to increase steadily with increasing Reynolds numbers. They tested apposed honeycomb surfaces. For the present tests, the phenomenon was also observed for tests of apposed roughened surfaces but was not observed for smooth-on-smooth or smooth-on-rough configurations. When the phenomenon was observed, dynamic pressure measurements showed a peak-pressure oscillation at the calculated Helmholtz frequency of the holes.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 9-14
Author(s):  
RENMEI XU ◽  
CELESTE M. CALKINS

This work investigates the ink mileage of dry toners in electrophotography (EP). Four different substrates were printed on a dry-toner color production Xerox iGen3 EP press. The print layout contained patches with different cyan, magenta, yellow, and black tonal values from 10% to 100%. Toner amounts on cyan patches were measured using an analytical method. Printed patches and unprinted paper samples, as well as dry toners, were dissolved in concentrated nitric acid. The copper concentrations in the dissolved solutions were analyzed by a Zeeman graphite furnace atomic absorption spectrometer. Analytical results were calculated to determine the toner amounts on paper for different tonal values. Their corresponding reflection densities were also measured. All data were plotted with OriginPro® 8 software, and four mathematical models were used for curve fitting. It was found that the C-S model fitted the experimental data of the two uncoated papers better than the other three models. None of the four models fitted the experimental data of the two coated papers, while the linear model was found to fit the data well. Linear fitting was the best in the practical density region for the two coated papers. Ink mileage curves obtained from curve fitting were used to estimate how much ink was required to achieve a target density for each paper; hence, the ink mileage was calculated. The highest ink mileage was 3.39 times the lowest ink mileage. The rougher the paper surface, the higher the requirement for ink film weight, and the lower ink mileage. No correlation was found between ink mileage and paper porosity.


Sign in / Sign up

Export Citation Format

Share Document